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A recently found extension of the Nijboer–Zernike approach to optical aberra-
tions allows analytic computation of the intensity point-spread function in the
focal region of an optical system. Here, the exit pupil function is expanded as a
Zernike series

P
n,m �m

n Z
m
n , with �m

n a complex coefficient of the single aberration
Zm

n , and the contribution of each of the terms of this series to the complex-
amplitude point-spread function U in the focal region has an analytic form. This
representation of U, and hence of the intensity point-spread function I ¼ jUj2,
is highly efficient since normally a pupil function is already accurately described
by a few �’s.
In this paper, the inverse problem of retrieving the �’s from a given intensity I

in the focal region is studied. A computation scheme for solving this nonlinear
estimation problem, under the assumption of small-to-medium–large aberrations,
is proposed. The key step is to linearize the theoretical intensity, comprising the
�’s as unknowns, by deleting second-order terms, and to optimize the match
between the linearized, theoretical intensity and the given intensity in the focal
region. The special case of a small pure-phase aberration pupil function is
separately considered. For general pupil functions (also containing amplitude
errors) or larger pure-phase aberrations, the linearization error(s) cannot be
ignored. By adopting a predictor–corrector approach, the effect of linearization
can be eliminated iteratively and this yields accurate or even perfect retrieval of
aberrations well beyond the diffraction limit.
Although the method was developed for lithographic applications, with

numerical apertures �0:60 and almost-ideal point sources, it has potential
applications to more general light optics settings (microscopy, astronomy, . . . ).
The application range of the method is, furthermore, extended in this paper to
cover the medium–high numerical aperture range (�0:80) and to the case that
the lateral size of the illumination source is comparable to the diffraction unit.
The paper is explorative in nature and aims at illustrating the potential and key

features of the methods, on the whole by showing results from simulations.
Accordingly, little effort has been spent on addressing the many fundamental
aspects of a mathematical, statistical and modelling nature; a list containing these
fundamental issues is included at the end of the paper.
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1. Introduction

1.1 Motivation

The present research effort is motivated by the ever increasing and changing needs in

optical lithography for methods to characterize aberrated lenses. The application

range of the method proposed in this paper is, however, by no means restricted to

lithography; we envisage applications of it also in fields like (scanning) microscopy,

astronomy, adaptive optics.

The increased interest in qualification methods for lithographic projection lenses

can be explained from the circumstance that projection lens aberrations have

an important contribution to line width variations and image misplacements [1, 2].

The impact of these aberrations increases with each new technology node due to the

small dimensions of the optical systems compared to the exposure wavelength.

To minimize this impact, modern lithographic lenses have a number of manipulators

to tune specific aberrations such as focal plane deviation, astigmatism, coma and

spherical aberrations. Although the lens manufacturer delivers a well optimized lens,

the advanced user needs to balance lens aberrations for optimal performance on

specific patterns. In addition, aberrations may vary with time due to lens aging and

machine drift.

Although several user tests are available, such as an in situ interferometer or

various resist-based methods [3–6], we have proposed in [7] a new approach. This

approach is based on the observation of the intensity point-spread function in the

focal region from which we can extract the significant Zernike coefficients in the

Zernike series representation
P

n,m �m
n Z

m
n ð�,#Þ of the exit pupil function Pð�,#Þ. This

approach has several advantages. In interferometric methods, the complex amplitude

U of the point-spread function is required while often only the intensity I ¼ jUj2

of the point-spread function is available. Furthermore, interferometry requires

expensive coherent sources with appropriate wavelengths, and the skills to

operate these sources are not readily available in a production environment. In

contrast, our method is straightforward from an experimental point of view, the test

pattern being as simple as possible: an isolated transparent hole in a dark field binary

mask.

Our method can be categorized as a phase-retrieval method for which numerous

approaches are available in the literature [8–21]. Our approach is new in the sense

that we use the highly efficient representation of pupil functions by means of their

Zernike coefficients. These coefficients are estimated by using a matching procedure

in the focal region between the (linearized) theoretical intensity point-spread func-

tion (comprising the coefficients as the quantities to be estimated) and the measured

intensity point-spread function. The reason why an approach such as the present one

has not been tried before is probably the fact that until recently no analytical scheme

was available for the evaluation of the contributions of the single aberration terms

Zm
n ð�,#Þ to the amplitude or intensity of the point-spread function in the focal region

(and not just at best focus). This obstacle has been removed in [22], and this has led

us to propose the retrieval method as appears in [7] which we will discuss now in

more detail.
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1.2 Zernike representation and retrieval for pure-phase aberrations

Although our retrieval method is capable of reconstructing general pupil functions,
comprising both amplitude and phase defects, we first treat in this subsection the
case where the optical system introduces a wavefront aberration only. This is also
historically the path along which the Zernike polynomials have been applied in optics.
They were meant to describe, in a stable and orthogonal way, aberrations of various
types and the order of a designed or manufactured optical system. The more versatile
description using the �-coefficients for a pupil function affecting amplitude and phase
will then follow as a generalization of the phase-only analysis in this subsection.

Assuming a pure-phase aberration we write the pupil function P in normalized
coordinates as

Pð�,#Þ ¼ exp ½iFð�,#Þ�, 0 � � � 1, 0 � # � 2p, ð1Þ

with F the real-valued aberration phase. This F is thought to be expanded as a
Zernike series

F ¼
X
n,m

�m
n Z

m
n , ð2Þ

with real �m
n and Zernike functions Zm

n given as

Zm
n ð�,#Þ ¼ Rm

n ð�Þ
cosm#,
sinm#,

�
0 � � � 1, 0 � # � 2p, ð3Þ

with Rm
n the Zernike polynomials in standard convention, see [23], section 9.2 and

Appendix VII. The summation in (2) is over all integer n,m � 0 with n�m � 0 and
even. We shall make the usual symmetry assumption on F, Fð�,�#Þ ¼ Fð�,#Þ,
so that only the cosine option on the right-hand side of (3) needs to be considered.
(The general case can be treated by working with two sets of �-coefficients, one for
the cosine and one for the sine option in (3).) The �’s in the expansion in (2) carry
physical significance: �0

2 represents defocus, �1
1 represents tilt, �2

2 represents astig-
matism, �0

4 represents spherical aberration, �1
3 represents coma, etc. (also see [23],

section 9.2 for this matter). The complex amplitude at normalized defocus parameter
f of the point-spread function is denoted by U and follows from Fourier optics as

Uðx, y; f Þ � Uðr, ’; f Þ

¼
1

p

ð
�2þ�2�1

ð
exp ½if ð�2 þ �2Þ þ iFð�,�Þ� exp ½2pi�xþ 2pi�y� d� d�

¼
1

p

ð1
0

ð2p
0

exp ½if �2� exp ½iFð�,#Þ� exp ½2pi�r cosð#� ’Þ�� d�d#: ð4Þ

With some abuse of notation, we have used here Cartesian coordinates �, � and polar
coordinates in the exit pupil ½ð�,�Þ ¼ ð� cos#, � sin #Þ�, and Cartesian coordinates x,
y and polar coordinates in the focal planes ½ðx, yÞ ¼ ðr cos ’, r sin ’Þ�. The relationship
between normalized image coordinates (x, y) and defocus parameter f on one hand
and the image coordinates ðX ,Y ,ZÞ in the lateral and axial direction is given by

x ¼ X
2pNA

�
, y ¼ Y

2pNA

�
, f ¼

pNA2

�
Z, ð5Þ
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with NA the numerical aperture of the lens and � the wavelength of the used light.
In all this, we assume NA sufficiently small, say NA � 0:60, so that certain
approximations are permitted; in particular, the third formula in (5) follows from
linearizing the true focal quantity 2pZ��1ð1� ð1�NA2

Þ
1=2

Þ as pNA2Z��1.
Under the assumption that F is sufficiently small, we may linearize the exp ½iF�,

and inserting (2)–(3), we get

exp ½iFð�,#Þ� � 1þ iFð�,#Þ ¼ 1þ i
X
n,m

�m
n R

m
n ð�Þ cosm#: ð6Þ

Using that for integer mð2p
0

exp ½iz cosð#� ’Þ� exp ðim#Þ d# ¼ 2pim exp ðim’ÞJmðzÞ, ð7Þ

with Jm the Bessel function of the first kind and of order m, we can carry out the
integration over # in the integral in (4) term-by-term by inserting the right-hand side
expression in (6). There results

Uðr, ’; f Þ � 2V0
0 ðr, f Þ þ 2i

X
n,m

im�m
n V

m
n ðr, f Þ cosm’, ð8Þ

where

Vm
n ðr, f Þ ¼

ð1
0

� exp ðif �2ÞRm
n ð�ÞJmð2pr�Þ d�: ð9Þ

In [22] and [24] we have presented series representations for the integrals in (9).
The representation in [22] is a generalization of Lommel’s representation of the
aberration-free point-spread function, see [23], subsection 8.8.1, and reads

Vm
n ðr, f Þ ¼ exp ðif Þ

X1
l¼0

�if

pr

� �lXp
j¼0

ulj
Jmþlþ2jþ1ð2prÞ

2pr
, ð10Þ

where

ulj ¼ ð�1Þp
mþ l þ 2j þ 1

qþ l þ j þ 1

mþ j þ l

l

� �
j þ l

l

� �
l

p� j

� �. qþ l þ j

l

� �
, ð11Þ

for l ¼ 0, 1, . . . and j ¼ 0, 1, . . . , p, and where we have set p ¼ 1=2ðn�mÞ,
q ¼ 1=2ðnþmÞ. This representation can be used for values of j f j as large as 10p,
where as a rule of thumb some 3j f j terms in the infinite series over l at the right-hand
side of (10) are required, see [25], Appendix B. The series representation of Vm

n given
in [24] is somewhat more complicated, involving both spherical Bessel functions
and Bessel functions of the first kind and integer order, but has the advantage that it
can be used for any value of f (and r). For our present purposes j f j does not exceed
4p, and so the representation in (10)–(11) is sufficient.

The term 2V0
0 at the right-hand side of (8) corresponds to the aberration-free

pupil function P � 1. For relatively small aberrations, this term dominates the
totality of all other terms. Accordingly, we write the intensity point-spread function
I ¼ jUj2 as
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Iðr, ’; f Þ ¼ 4jV0
0 ðr, f Þj

2 � 8
X
n,m

�m
n Im ½imVm

n ðr, f ÞV
0�
0 ðr, f Þ� cosm’þ Cðr, ’; f Þ,

ð12Þ

where

Cðr, ’; f Þ ¼ 4
X

n1,m1; n2,m2

�m1
n1
�m2
n2

Re½im1�m2Vm1
n1
ðr, f ÞVm2�

n2
ðr, f Þ� cosm1’ cosm2’ ð13Þ

comprises all second-order cross-terms.
Formula (12) shows how one can compute the intensities in the focal planes from

the Zernike coefficients � of the pure-phase aberration F (assuming that exp ½iF� may
be linearized). The inverse problem, in which the �’s are computed from the intensity
I is, in principle, awkward due to the C term at the right-hand side of (12) involving
the �’s quadratically. In section 3 we present a strategy for handling equation (12)
in which the C term disappears altogether from the formulas, leaving us with a set of
linear systems in � (decoupled per azimuthal order m) which can easily be solved.
Thus, within this procedure, it is permitted to delete C.

The procedure detailed in section 3 to compute �’s from intensities I forms
the basis for the aberration retrieval [pure phase] algorithm in this paper. Thus we
assume to have available recorded intensity functions Imeas. The subscript ‘meas’
serves here to distinguish from the ‘theoretical’ intensity I in equation (12); we do
not have a particular measurement procedure in mind at this point. Applying the
procedure of section 3, with I at the left-hand side of (12) replaced by Imeas, we find
�’s that we consider to describe the pupil function that gave rise to the recorded
Imeas. We are intentionally somewhat vague in this formulation since it is not so that
the �’s thus obtained minimize a mean-squared error between Imeas and the right-
hand side of (12) including the C term. Nevertheless, in the sequel we shall somewhat
loosely use phrases like ‘best match’ approach for the procedure of obtaining �’s as
is done in section 3.

2. Overview

In section 3 we present the details of the aberration retrieval method as outlined in
subsection 1.2. In particular, we shall be more precise about the matching procedure.
It will turn out that choosing a symmetric f-range and sampling in the image planes
consistent with the choice of polar coordinates ðr, ’Þ has considerable advantages.
For instance, the linear systems that we construct for estimating the �m

n decouple
per m. Secondly, the linearization step (6) comes with an error of third-and-higher
order only. At the end of section 3 we shall present a number of simulations that
demonstrate these and other points. Here, we also want to point out that the method
has proved its validity in the practical context of characterizing lithographic
projection lenses, see [7, 26–28]. As an illustration of this statement we have included
figure 1 which shows results of a detuning experiment where we compare the nominal
state of an imaging tool with a detuned state, in which the aberrations have been
added intentionally, and for either state our retrieval method has been used to
estimate the aberrations. See [27] for more details.
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In section 4 we extend the method of section 3 (which was limited to retrieval

of pure-phase aberrations) to the case of general pupil functions P ¼ A exp ½iF� with
real aberration phase F and transmission non-uniformity A� 0. The pupil function

P is now thought to be expanded as

Figure 1. Detuning experiment in which aberrations are compared to nominal state imaging
tool. Top: þ50m� spherical aberration added, middle: þ50m� X-coma added, bottom: þ50m�
HV-astigmatism added.
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P ¼ A exp ½iF� ¼
X
n,m

�m
n Z

m
n ð14Þ

with Zm
n as before, see (3), and there results, in a similar manner as in (8), the

representation

U ¼
X
n,m

�m
n U

m
n ; Um

n ðr, ’; f Þ ¼ 2imVm
n ðr, f Þ cosm’ ð15Þ

of the point-spread function. The representation in (15) is exact since no linearization
step was required. The �m

n are general complex numbers. Thus when we expand
I ¼ jUj2 as in (12), and concentrate on the cross-terms between V m

n and V 0
0 , we have

to consider, in addition to the ‘basis functions’

Im ½imV m
n ðr, f ÞV 0�

0 ðr, f Þ� cosm’ ð16Þ

that occur at the right-hand side of (12), the functions

Re ½imV m
n ðr, f ÞV 0�

0 ðr, f Þ� cosm’: ð17Þ

The basic assumption is now that all �m
n with ðn,mÞ 6¼ ð0, 0Þ are relatively small

compared to �0
0. This �0

0 can be taken to be positive since in our intensity-based
method, the �m

n can be retrieved only up to an overall phase factor.
The quantities to be estimated now are Im �m

n and Re �m
n , and these occur as

coefficients of the functions in (16) and (17), respectively, in the linearized intensity.
As in section 3, these coefficients can be estimated by optimizing the match between
(linearized) theoretical and recorded intensity. And, as in section 3, choosing a
symmetric f-range and sampling the image planes ðr, ’Þ-consistently has certain
advantages.

In contrast with what we saw in the pure-phase retrieval method, the cross-terms
involving two �m

n ’s with ðm, nÞ 6¼ ð0, 0Þ do not vanish altogether when the procedure
of section 3 is applied. By adopting an iterative predictor–corrector approach, where
in each iteration step the cross-terms are estimated by using the current estimates
of the �m

n , it is possible to eliminate this error for a surprisingly large range of �m
n .

We shall demonstrate these and other points at the end of section 4 by showing
results of simulations.

We next describe the contents of section 5. The retrieval methods of sections 3
and 4 are valid for the cases that the numerical aperture NA is not too large, say
�0:60, and that the illumination source can truly be considered as a delta function.
When NA is very high, say beyond 0.80, a scalar treatment of the point-spread
function as we have it here is not adequate anymore, and also the state of
polarization has to be taken into account. Such an effort has been undertaken
in [29] for the forward problem and is underway for the inverse problem in [30];
the computational schemes get quite complicated. However, in the intermediate
range of NA’s, see 0:60 � NA � 0:80, when using natural light, the point-spread
function can still be adequately represented by the Fourier integral in (4) in which
one replaces

exp ½if �2� by ARð�Þ exp ½iFCð�Þ�, ð18Þ
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where

ARð�Þ ¼ ð1�NA2�2Þ�1=4, FCð�Þ ¼ f
1� ð1�NA2�2Þ1=2

1� ð1�NA2
Þ
1=2

: ð19Þ

In (19), AR is an amplitude function accounting for the radiometric effect and FC

is the phase function that correctly describes defocusing in the exit pupil. This
is consistent with the formulas in [29], sections 3 and 4. Note that ARð�Þ and FCð�Þ
can be approximated by 1 and f�2, respectively, in the low-NA regime.

Our retrieval methods can be adjusted for the substitution in (18) as follows.
We determine (near-) optimal complex numbers ~ff , ~gg such that

ARð�Þ exp ½iFCð�Þ� � exp ð ~ggþ i ~ff �2Þ, ð20Þ

and we replace all

Vm
n ðr, f Þ by exp ð ~ggÞVm

n ðr,
~ff Þ: ð21Þ

Here we note that nothing prevents us from using formula (10) for Vm
n with a

complex argument f.
In a similar way, we can account for the effect of using our methods with an

illumination source of non-negligible radius a>0. Then the pupil function must be
multiplied by the Fourier transform, in normalized form J1ð2pa�Þ=pa�, of a disc of
radius a, where a is expressed in units �=NA. This J1ð2pa�Þ=pa� admits an accurate
approximation as in (20) for values of a as large as 0.4, so that an amplitude drop
at the rim of the pupil of some 50% may occur. In section 5 we detail all this, and we
present results of simulations that support the claims made above.

Finally, in section 6 we present conclusions and we present a list of other effects
that could have been studied by simulations. Section 6 also enumerates a number
of fundamental aspects of the methods that should be addressed in the future.

3. Retrieval of pure-phase aberrations

In this section we work out the method as sketched in subsection 1.2, also see [3], for
the retrieval of the Zernike coefficients �m

n of the aberration phase

Fð�,#Þ ¼
X
n,m

�m
n R

m
n ð�Þ cosm# ð22Þ

occurring in the pupil function P ¼ exp ½iF� from the intensity I ¼ jUj2 in the focal
region. Furthermore, we present a number of simulation results to assess the
performance of the method.

3.1 Detailed description of the method

We linearize exp ½iF� as in (6) so that the approximation (8) of U results. We assume
that we have available measurements Imeas of the intensity I in the ðr, ’; f Þ-space, and
we intend to estimate the �m

n by adopting a best-fit approach in (13). A convenient
decoupling in subproblems per m occurs by multiplying (13) by cosm’ and averaging
over ’ 2 ½0, 2p�. We thus introduce for m ¼ 0, 1, . . . the functions
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Cm
measðr, f Þ ¼

1

2p

ð2p
0

Imeasðr, ’; f Þ cosm’ d’ ð23Þ

and

Cm
n ðr, f Þ ¼ �8"�1

m Im ½imVm
n ðr, f ÞV0�

0 ðr, f Þ�, ð24Þ

where "0 ¼ 1, "1 ¼ "2 ¼ � � � ¼ 2 (Neumann’s symbol). The Cm
meas in (23) are obtained

from the measured data by a Fourier analysis in which only the cosine part matters
for our symmetry assumption. In (24) we restrict to integer n,m � 0 with n�m � 0
and even; all Vm

n are analytically available in accordance with (10) and (11). With
these notations, we can write (12) under deletion of the term C in (13) as

Cm
measðr, f Þ � 4�mojV

0
0 ðr, f Þj2 þ

X
n

�m
n C

m
n ðr, f Þ, ð25Þ

where m ¼ 0, 1, . . . and where we have used Kronecker’s delta �mo.
Having decoupled per m ¼ 0, 1, . . . , we next choose the �m

n , n ¼ m,mþ 2, . . . ,
such that in (25) the match between the left-hand side data and the (approximate)
theoretical expression on the right-hand side is optimized. For this we introduce an
inner product for functions Cðr, f Þ and �ðr, f Þ as

ðC,�Þ ¼

ð1
0

ð1
�1

Cðr, f Þ��ðr, f Þr dr df : ð26Þ

Before proceeding we note that

ðjV0
0 j

2,C0
n0 Þ ¼ 0, all n0: ð27Þ

This follows from the more general fact, see (9), that for all m, n

Vm
n ðr,�f Þ ¼ Vm�

n ðr, f Þ, ð28Þ

so that jV 0
0 j

2 is even in f while all C0
n0 are odd in f. Now taking inner products in (25)

we get for m ¼ 0, 1, . . . X
n

�m
n ðC

m
n ,C

m
n0 Þ � ðCm

meas,C
m
n0 Þ, ð29Þ

in which n, n0 are restricted to the range m,mþ 2, . . . .
For m ¼ 0, 1, . . . a vector of estimates âam of am ¼ ð�m

n Þn¼m,mþ2,... can now be
obtained from (29) as follows. We define a Gram matrix Gm by

Gm ¼ ððCm
n ,C

m
n0 ÞÞn0, n¼m,mþ2,..., ð30Þ

and a right-hand side vector rm by

rm ¼ ððCm
meas,C

m
n0 ÞÞn0¼m,mþ2,..., ð31Þ

and we set

âam ¼ ðGmÞ
�1rm, ð32Þ

where ðGmÞ
�1 is the inverse of the Gram matrix Gm in (30). This completes the

description of our estimation procedure.
We shall now note particular features of the method just given. It has been

observed numerically, also see the simulation results below, that the functions Cm
n ,
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n ¼ m,mþ 2, . . . , for fixed m ¼ 0, 1, . . . are close to being orthogonal with respect to
the inner product in (26). As a consequence, the Gram matrices in (30) are well
conditioned and the inversions in (32) present no problems.

In a practical implementation of the method, the ranges in (29) for n, n0 are finite,
say m,mþ 2, . . . ,mþ 2M. The solution vector âamðMÞ obtained by solving the
truncated system has the property that

Cm
meas �

X
n¼m,mþ2,...,mþ2M

	mn C
m
n

�����
�����
2

ð33Þ

is minimal for 	mn ¼ �̂�m
n ðMÞ, n ¼ m,mþ 2, . . . ,mþ 2M. Here k k is the inner product

norm corresponding to ð , Þ in (26).
A second finitization aspect is the truncation and discretization of the inte-

grals over r and f. We have observed that the condition numbers of the Gram
matrices quickly saturate at their limiting values when we take evenly spaced
f ’s in a symmetric range contained in ½�4p, 4p� and r’s that cover a range
½0, ðmþ 2M þ 5Þ=2p� when Gm is truncated as above. One should think here of
9–15 f-samples and 512 r-samples. Note that choosing the f range finite but
symmetric around 0 maintains orthogonality of jV0

0 j
2 and C0

n0 , see (27).
We next assess the effect of linearization of exp ½iF� in (6) and deletion of the

term (13) in the linear systems of (29). We start with the second issue, and we shall
show that (13) vanishes altogether when we multiply by cosm’ and average over ’ 2

½0, 2p� and, subsequently, take inner products with the Cm
n0 . As a result, we have that

the system of equations in (29) would have resulted as well when we would have
worked with an intensity in which the term (13) were included. To prove this claim,
we first observe that multiplying (13) by cosm’ and averaging over ’ 2 ½0, 2p�
causes all terms to vanish with indices m1, m2 such that jm1 	m2j 6¼ m. Thus there
remains

Re ½im1�m2Vm1
n1
ðr, f ÞVm2�

n2
ðr, f Þ� ð34Þ

with jm1 	m2j ¼ m. We get from (28) that the function in (34) is even in f when m is
even and odd in f when m is odd. Similarly, it follows from (28) that the function
Cm

n0 ðr, f Þ in (24) is odd in f when m is even and even in f when m is odd. Hence, the
functions in (34) with jm1 	m2j ¼ m and the Cm

n0 have opposite parity with respect to
their dependence on f and, so, their inner products vanish.

We next show that a cancellation as above also occurs for the deleted second-
order term �ð1=2ÞF2 in the linearization (6) of exp ½iF�. This second-order term has
a contribution U2 to the true U at the right-hand side of (8) given by

U2ðr, ’; f Þ ¼
�1

2p

ð1
0

ð2p
0

exp ðif �2ÞF2ð�,#Þ exp ½2pi�r cos ð#� ’Þ��d� d#: ð35Þ

To second order, this U2 yields a contribution 4Re ½U2V
0�
0 � to the true I at the right-

hand side of (13). With F given by its Zernike cosine expansion in (21), we get that
U2 is a quadruple series containing terms

	Vm1m2
n1n2

ðr, f Þijm1	m2j cos jm1 	m2j’, ð36Þ
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where

	Vm1m2
n1n2

ðr, f Þ ¼

ð1
0

� exp ðif �2ÞRm1
n1
ð�ÞRm2

n2
ð�ÞJjm1	m2jð2pr�Þ d�: ð37Þ

For these 	V the symmetry relation (28) holds equally well. When we multiply U2

by cosm’ and average over ’ 2 ½0, 2p�, all terms (36) cancel, except those with
jm1 	m2j ¼ m. Due to the factors ijm1	m2j in (36) and the symmetry relations holding
for V0

0 and 	V , we see that

1

2p

ð2p
0

Re ½U2ðr, ’; f ÞV0�
0 ðr, f Þ� cosm’d’ ð38Þ

is even in f when m is even and odd in f when m is odd. Hence the Cm
n0 and (38) have

opposite parity as a function of f, and their inner products vanish. As a result we
have that linearization of exp ½iF� as in (6) causes only third- and higher-order errors
in the near-identities in (29).

3.2 Simulations

(a) In figure 2(a) and (b), we display the condition numbers of the Gram matrices
Gm in (30) (vertical axis in natural logarithms) as a function of the sampling
range and density in the focal and radial direction, respectively. These
condition numbers are defined as the ratio of the minimum and maximum
eigenvalue of the truncated and scaled Gram matrix

Gm
M, scaled ¼

ðCm
n ,C

m
n0 Þ

kCm
n kkC

m
n0 k

� �
n, n0¼m,mþ2,...,mþ2M

, ð39Þ

Figure 2. The condition numbers of the Gram matrices are lower when (a) the focal range is
either extended and/or sampled more densely and (b) the radial range is extended and/or
sampled more densely. The shown condition numbers are the maxima obtained when
considering all truncated and scaled matrices Gm

M, scaled in (43) with m � 6, mþ 2M � 10.
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where kCk ¼ ðC,CÞ
1=2. The maximum occurring condition number of all

truncated matrices Gm
M, scaled in (39) with mþ 2M � 10, m � 6 is plotted

against the discretization at which the inner products C were calculated.

As expected, lower condition numbers occur when a larger focus range is

taken and/or more focal planes are used to approximate the inner products

of the Cm
n . A similar thing happens for the sampling in the radial direction.

The sampling density in the # direction was not found to have much influence

on the condition number. It is understood here that the general sampling

theorem of taking at least 2mmax values of # into account has to be obeyed.

In all further experiments we use (unless stated otherwise)

Table 1. Perfect reconstruction.

n m � �rec

2 0 0.3000 0.3000
4 0 0 �0.0000
6 0 0 �0.0000
1 1 0.1000 0.1000
3 1 0.4000 0.4000
5 1 0 �0.0000
2 2 0.2000 0.2000
4 2 0 0.0000
6 2 0 �0.0000
3 3 0 0.0000
5 3 0 0.0000

Figure 3. (a) The error in the retrieval of the coma coefficient �1
3 as a function of its size.

(b) The residual after subtraction of the third-order fit. The scaling parameter c equals 0.0640.
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11 f -points equally spaced in ½�2p, 2p�,

64 #-points 2p
k

64
, k ¼ 0, 1, . . . , 63,

512 r-points equally spaced in ½0, 10=p�

:

8><
>: ð40Þ

This results in Gram matrices (39) having condition numbers of the order
of 10 or less.

(b) In table 1 we show that perfect reconstruction occurs for pupil functions P
of the form 1þ i

P
n,m �m

n Z
m
n with real �’s, finitely many of them 6¼ 0.

(c) In figure 3(a) and (b), we show that third- and higher-order errors occur in
retrieval of � in the comatic pupil function exp ½i�Z1

3ð�,#Þ�. We have
simulated the measured intensity as

Imeas ¼ 2
X
n,m

im1
3�

m
n ð�ÞV

m
n ðr, f Þ cosm’

�����
�����
2

, ð41Þ

where 1
3�

m
n ð�Þ are the Zernike coefficients of exp ½i�Z1

3ð�,#Þ� as given in the
appendix, (A 18), and where the summation extends over all relevant m, n
with m � 3, n � 6. In retrieving � it is enough to concentrate on the system
(29) with m¼ 1, for which n, n0 ¼ 1, 3, 5. The observed reconstruction error is

very accurately described by the third degree polynomial c�3; compare the

vertical axes in figure 3(a) and (b).

A similar exercise was done for retrieval of � in the spherical aberrated

pupil function exp ½i�Z0
4ð�,#Þ�. To simulate the measured intensity, we use the

quantities 0
4�

0
4rð�Þ as given in the appendix with (A 11) and (A 12) so that

Figure 4. (a) The error in the retrieval of the spherical aberration coefficient �0
4 as a function

of its size. (b) The residual after subtraction of the third-order fit. The scaling parameter
c equals 0.0785.
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Imeas ¼ 2
X
r

0
4�

0
4rð�ÞV

0
4r

�����
�����
2

, ð42Þ

where r ¼ 0, 1, 2, 3, 4. In retrieving �, we concentrate on the system (29)

with m¼ 0 and n, n0 ¼ 2, 4, . . . , 16. Again, a third-order monomial describes

the reconstruction error accurately. See figure 4(a) and (b).

(d) We consider next the effect of adding DC-free noise to the measured

intensities. Although this leads to locally negative intensities, which may

seem unrealistic, it is in an experimental setting with noise present necessary

to subtract a DC offset from the measured intensity so as to avoid severe

errors when solving the system (29) with m¼ 0. This DC offset is estimated as

the average intensity value present in the best focus plane ( f¼ 0) far outside

the Airy disc. In table 2 we display reconstruction results for a case as in (b)

above where we have added Gaussian DC-free noise with SNR ¼ 1, 100, 10

and with the standard sampling scheme (40) in effect. Increasing the number

of focal planes from 11 to 41 shows that even for SNR as low as 2, fair

reconstruction results are still possible (table 3).

In figure 5(a)–(c) the influence of addition of Gaussian DC-free noise on

the third-order behaviour of the reconstruction error for a comatic pupil

function exp ½i�Z1
3 � is shown with SNR ¼ 1 (compare with figure 3(a)), 100,

10. We see that the cubic law continues to be in force, though with varying

proportionality constants.

Table 3. Reconstruction of �’s with 41 focal levels, SNR ¼ 2.

n m � �rec

2 0 0.3000 0.2992
4 0 0 �0.0420
6 0 0 �0.0077
1 1 0.1000 0.0694
3 1 0.4000 0.3688
5 1 0 �0.0233
2 2 0.2000 0.1743
4 2 0 0.0369
6 2 0 �0.0278
3 3 0 �0.0147
5 3 0 0.0315

Table 2. Effect of adding DC-free noise to the measurement.

SNR ¼ 1 SNR ¼ 100 SNR ¼ 10
n m � �rec �rec �rec

2 0 0.3000 0.3000 0.2996 0.2989
1 1 0.1000 0.1000 0.1003 0.1027
3 1 0.4000 0.4000 0.4002 0.4082
2 2 0.2000 0.2000 0.1991 0.2087
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4. Retrieval of general aberrations

In section 3 we have considered the problem of retrieving the phase F of a pupil
function P ¼ exp ½iF� with a pure-phase aberration. The resulting algorithm is
surprisingly simple and easy to implement, yields accurate results in practice [7],
and can be used in the case where it is safe to ignore third-order terms �iF3=6.
However, its application range is restricted to pure-phase aberrations. In this section
we present a method for retrieving both amplitude A>0 and phase F of a pupil
function P ¼ A exp ½iF� from the intensity point-spread function in the focal region.
Furthermore, we present a number of simulation results to assess the performance
of the method.

4.1 Detailed description of the method

We start by expanding the pupil function P into a Zernike cosine series

P ¼ A exp ½iF� ¼
X
n,m

�m
n Z

m
n ; Zm

n ð�,#Þ ¼ Rm
n ð�Þ cosm#, ð43Þ

where now the �m
n are general complex numbers. In the often occurring case that

A � 1, F small, we have that �0
0 � 1 while all other �m

n are small, and in that case the
imaginary parts of the �m

n describe F (pretty much as the �m
n of section 3 did) while

the real part of the �m
n describes lnA. When A 6� 1 and/or F is not small, the physical

significance of the �’s is not straightforward anymore, but this diminishes in no way
the efficiency of the representation of P by means of its Zernike coefficients.

We assume that �0
0 is positive and relatively large compared to the other �m

n ’s; the
positivity assumption may be made, since we observe intensities, and we can retrieve
the coefficients only up to an overall phase factor. We obtain for the point-spread
function from (43) the exact representation

Uðr, ’; f Þ ¼ 2�0
0V

0
0 ðr, f Þ þ 2

X
n,m

0
�m
n i

mVm
n ðr, f Þ cosm’, ð44Þ

Figure 5. The reconstruction error of the coma coefficient is related in third-order to the size
of the true aberration present, even in the presence of noise in the measured data.
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where the 0 on the summation sign denotes that the term with n ¼ m ¼ 0 has been
deleted. Expanding I ¼ jUj2, we obtain

I � 4ð�0
0Þ

2
jV0

0 j
2 þ 8

X
n,m

0
�0
0 Re ð�m

n ÞRe ½imVm
n V

0�
0 � cosm’

� 8
X
n,m

0
�0
0 Im ð�m

n Þ Im ½imVm
n V

0�
0 � cosm’: ð45Þ

Here we have omitted the term

4
X

n1,m1; n2,m2

00
Re ½�m1

n1
�m2�
n2

im1�m2Vm1
n1
Vm2�

n2
� cosm1’ cosm2’, ð46Þ

where the 00 on the summation sign denotes that all terms with n1 ¼ m1 ¼ 0 or
n2 ¼ m2 ¼ 0 have been deleted.

We next proceed as in section 3 by introducing, along with the functions Cm
n

in (24) appearing on the second line of (45), the functions

�m
n ðr, f Þ ¼ 8"�1

m Re ½imVm
n ðr, f ÞV0�

0 ðr, f Þ� ð47Þ

with "m Neumann’s symbol as in (24). Furthermore, we let Cm
meas as in (23). Then,

upon multiplying the near-identity in (45) by cosm’ and averaging over ’ 2 ½0, 2p�,
we get

C0
meas �

1

2
ð�0

0Þ
2�0

0 þ
X
n

0
�0
0 Re ð�0

nÞ�
0
n þ

X
n

0
�0
0 Im ð�0

nÞC
0
n, ð48Þ

Cm
meas �

X
n

�0
0 Re ð�m

n Þ�
m
n þ

X
n

�0
0 Im ð�m

n ÞC
m
n , ð49Þ

for m¼ 0 and m ¼ 1, 2, . . . , respectively.
We shall now take inner products as in section 3 where we note the following

consequence of (28): for all m ¼ 0, 1, . . . we have

ð�m
n ,C

m
n0 Þ ¼ 0, all n, n0 ¼ m,mþ 2, . . . : ð50Þ

Indeed, it follows from (28) that �m
n is even in f when m is even and odd in f when m is

odd, whereas Cm
n0 is odd in f when m is even and even in f when m is odd. Hence,

building for m ¼ 0, 1, . . . linear systems as in (29) by taking inner products in the
near-identities in (45) and (46) with �m

n0 , C
m
n0 , we get a decoupling according to

1

2
ð�0

0Þ
2
ð�0

0,�
0
n0 Þ þ

X
n

0
�0
0 Re ð�0

nÞð�
0
n,�

0
n0 Þ � ðC0

meas,�
0
n0 Þ,X

n

0
�0
0 Im ð�0

nÞðC
0
n,C

0
n0 Þ � ðC0

meas,C
0
n0 Þ

8>><
>>: ð51Þ

for m¼ 0 where n, n0 ¼ 0, 2, . . . , andX
n

�0
0 Re ð�m

n Þð�
m
n ,�

m
n0 Þ � ðCm

meas,�
m
n0 Þ,X

n

�0
0 Im ð�m

n ÞðC
m
n ,C

m
n0 Þ � ðCm

meas,C
m
n0 Þ

8><
>: ð52Þ

for m ¼ 1, 2, . . . where n, n0 ¼ m,mþ 2, . . . .
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The procedure to estimate the �m
n ’s is now as follows. We solve the first system in

(51) involving ð�0
0Þ

2, �0
0 Re ð�0

nÞ linearly. This then gives �0
0 (which was assumed to be

positive) and subsequently Re ð�0
nÞ, n ¼ 2, 4, . . . . Having found �0

0, we can now solve
the second system in (51) involving �0

0 Im ð�0
nÞ linearly and the two systems in (52)

involving �0
0 Re ð�m

n Þ and �0
0 Im ð�m

n Þ, respectively, linearly for m ¼ 1, 2, . . . . We thus

obtain estimates �̂�m
n by replacing all� in (51) and (52) by¼ and solving the linear

systems.
Note that in the case of purely imaginary �m

n , only the second lines in (51) and
(52) need to be considered (and also the first line in (51) with n0 ¼ 0 to find �0

0). This
then yields the pure-phase retrieval method of section 3.

As in the case of pure-phase retrieval, the systems are normally well conditioned
since either system ðCm

n Þn¼m,mþ2,... and ð�m
n Þn¼m,mþ2,... is close to being orthogonal.

Also, the finitization issues are similar to those in the pure-phase retrieval case.
However, the deletion of the small cross-terms expression (46) from the theo-

retical intensity I ¼ jUj2 has a quite different effect on the linear systems in (51) and
(52) than the deletion of (13) had on the systems in (29). The reason for this is that
the functions

Re ½�m1
n1
�m2�
n2

im1�m2Vm1
n1
Vm2�

n2
� ð53Þ

are, in general, neither even nor odd in f since the �m
n are general complex numbers.

A simple predictor–corrector approach, however, can eliminate the error
incurred by deleting the term in (46) in many cases completely. Here one constructs
iteratively estimates �̂�m

n ðkÞ of the �m
n as follows. We let �̂�m

n ð0Þ ¼ �̂�m
n , where �̂�m

n are
the estimates of �m

n as found by applying the above procedure in which the � in (51)
and (52) are replaced by ¼ . Having �̂�m

n ðkÞ available for some k ¼ 0, 1, . . . , we apply
the above procedure for finding �̂�m

n , however, with the measured Imeas replaced
with Imeas � EðkÞ in which E(k) is the term (46) with

�̂�m1
n1
ðkÞð�̂�m2

n2
ðkÞÞ� substituted for �m1

n1
ð�m2

n2
Þ
�: ð54Þ

Under normal conditions, this predictor–corrector procedure converges rapidly
while even under not so favourable conditions (with �0

0 not large or even rather
small compared to some of the other �m

n ) convergence, be it slow, often takes place as
well.

The computational scheme for the predictor–corrector approach requires han-
dling the quantities Imeas � EðkÞ, k ¼ 0, 1, . . . , as if they were measured quantities.
Thus these I � EðkÞ have to be multiplied by cosm’ and averaged over ’ 2 ½0, 2p�,
and, subsequently, inner products with the �m

n0 , C
m
n0 have to be taken. Because of the

special form of the E(k), see (46), and the symmetry properties of the terms in (46),
see (28), this can be done in a considerably more efficient way, but we shall not
present the details here since the administration is rather involved.

4.2 Simulations

(a) In figure 6(a)–(c) we show that second-order reconstruction errors occur in
the case that the pupil function P is given as P ¼ 1þ �0

4R
0
4, where �

0
4 is real.
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We now use Imeas ¼ j2V 0
0 þ 2V 0

4 j
2, and it is sufficient to consider the first

system in (51). The deleted small second-order term involving ð�0
4Þ

2 causes

j1� �̂�0
0j to behave quadratically, and similarly for j0� �̂�0

2j and j�0
4 � �̂�0

4j.

A similar exercise has been done with the pupil function P ¼ 1þ �1
3Z

1
3 with

real �1
3. Now the first system in (51) and the first systems in (52) with m¼ 1, 2

should be considered (the other systems are trivial). The deleted small

second-order term involving ð�1
3Þ

2 has an impact on the first system in (51)

and the system in (52) with m¼ 2. Consequently, we have that j1� �̂�0
0j

behaves quadratically and so does j0� �̂�2
2j. The reconstruction error j�1

3 � �̂�1
3j

behaves cubically. This latter fact can be explained from the circumstance

that the first system in (52) with m¼ 1 (from which �0
0�

1
3 is estimated) has

only the term �0
0�

1
3ð�

1
3,�

1
n0 Þ on the left-hand side, whence the second-order

error in �̂�0
0 produces a third-order error in �̂�1

3. See figure 7(a)–(c).

Figure 6. Quadratic dependence of the reconstruction errors on the size of the aberration
present: (a) j1� �̂�0

0j, (b) j0� �̂�0
2j, (c) j�

0
4 � �̂�0

4j.

Figure 7. Quadratic dependence of the reconstruction errors on the size of the aberration
present: (a) j1� �̂�0

0j, (b) j0� �̂�2
2j. Cubic dependence for the reconstruction error of the

aberration that was present: (c) j�1
3 � �̂�1

3j.
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(b) We consider here and in (c) and (d) below the predictor–corrector method.

We first consider the case that the pupil function P is given exactly asP
n,m �m

n Z
m
n with finitely many �m

n 6¼ 0 and j�m
n j < �0

0, �m
n complex. The

measured intensity is then j2
P

n,m im�m
n V

m
n ðr, f Þ cosm’j2 and the linear

systems in (51) and (52) involve all m � (two times largest m with �m
n 6¼ 0

for some n) and all n, n0 � (two times largest n with �m
n 6¼ 0 for some m).

Figure 8 displays the reconstruction errors j�m
n � �̂�m

n ðkÞj as a function of

the number of iterations for all those n ,m with �m
n 6¼ 0, see table 4 for

these �m
n . There are also several (non-displayed) curves of spurious j�̂�m

n ðkÞj

corresponding to m, n for which �m
n ¼ 0.

In figure 9 we consider for the example of table 4 the real and imaginary

parts of the specific convergence histories of the �̂�m
n ðkÞ with �m

n 6¼ 0.

We conclude from both figures 8 and 9 that there is rapid convergence.

It is also interesting to consider a case where some of the j�m
n j are allowed

to be larger than �0
0, see table 5. These �m

n are obtained as the quantities
1
3�

m
n ð�Þ of the appendix, (A 18), of the comatic pupil function exp ½i�Z1

3 � with

� as large as 2ð1:6Þ1=2 (twice the diffraction limit) and n � 6, m � 3. Evidently,

for accurately representing exp ½i�Z1
3 � where � is this large, considerably more

terms should be considered; however, our present intention is just to show

that perfect reconstruction is possible with the non-dominant �0
0 term, and

taking exp ½i�Z1
3� with large � is such a case. The 4th and 6th columns show

reconstruction results after 100 iterations. In figure 10 we display the

Figure 8. The absolute values of the reconstruction errors drop about 5 dB in each iteration
of the predictor–corrector method.

Table 4. Present aberration coefficients.

�0
0 ¼ 1 �1

1 ¼ 0:1� 0:3i �2
2 ¼ 0:5þ 0:2i

�0
2 ¼ �0:2� 0:1i �1

3 ¼ �0:4þ 0:4i �2
4 ¼ 0:5þ 0:6i

�0
4 ¼ 0:3þ 0:6i
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Figure 9. Successive values of real and imaginary parts of �̂�m
n ðkÞ, k ¼ 0, 1, . . . , 7 for the

example of table 4. The horizontal axes are positioned on the values given through the table.
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reconstruction error curves j�m
n � �̂�m

n ðkÞj for n,m as in table 5 which occur
with �m

n 6¼ 0. Indeed, convergence takes place, but at a very slow rate.
A similar example, with �¼ 5, shows clear divergence of the predictor–

corrector method.
(c) The potential of perfect reconstruction using the predictor–corrector

approach can also be demonstrated on the level of pupil functions. We
consider the pupil function

Pð�,#Þ ¼ exp ½���2 þ i�Z1
3ð�,#Þ� ð55Þ

(Gaussian amplitude with �¼ 0.2, comatic phase function with �¼ 0.2).
Using the fact that the Vm

n -functions in (9) and (10) can be evaluated with
complex focal arguments as well, we have for the measured intensity the
representation

Imeas ¼ 2
X
n,m

im1
3�

m
n ð�ÞV

m
n ðr, f þ i�Þ cosm’

�����
�����
2

, ð56Þ

Table 5. Applied and retrieved (100 iterations) aberration coefficients.

n m Re ð�Þ Re ð�̂�Þ Im ð�Þ Im ð�̂�Þ

0 0 0.6610 0.6611 0 0
2 0 �0.0303 �0.0312 0 �0.0000
4 0 �0.2875 �0.2869 0 0.0000
6 0 �0.5506 �0.5502 0 �0.0000
1 1 0 0.0000 �0.1007 �0.1006
3 1 0 �0.0000 1.7948 1.7924
5 1 0 �0.0000 �0.1867 �0.1858
2 2 �0.4872 �0.4857 0 0.0000
4 2 0.0852 0.0876 0 �0.0000
6 2 �0.6983 �0.6991 0 �0.0000
3 3 0 �0.0000 �0.1134 �0.1125
5 3 0 0.0000 �0.2385 �0.2376

Figure 10. The absolute values of the reconstruction errors j�m
n � �̂�m

n ðkÞj decrease slowly but
steadily for � ¼ 2ð1:6Þ1=2. The largest error after 100 iterations (k) is below 10�2:5.
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where 1
3�

m
n ð�Þ are as in the appendix, (A 18), and the summation extends over

all relevant m, n with m � 4, n � 8. In figure 11, we display the reconstruction
error jPð�,#Þ � Precð�,#Þj where

Precð�,#Þ ¼
X
n,m

�m
n, recZ

m
n ð�,#Þ ð57Þ

and �m
n, rec are obtained as �m

n ðkÞ with iteration number k¼ 8.
(d) It is, furthermore, interesting to see how the predictor–corrector method

performs in the presence of (Gaussian) DC-free noise. We use the same
(non-zero) �m

n ’s as in table 4 and in figure 12(a)–(c) we show the convergence
history (using 10 iterations) of the various �̂�m

n ðkÞ for the cases where
SNR ¼ 1, 100, 10, respectively; the graphs display the reconstruction errors
j�m

n � �̂�m
n ðkÞj for those m , n that have �m

n 6¼ 0. In the above example we have

Figure 11. The pupil function Pð�,#Þ to be retrieved is (a) a Gaussian transmission (b)
together with a comatic phase. (c) The absolute reconstruction error jPð�,#Þ � Precð�,#Þj is
displayed in grey-scale coded powers of 10.

Figure 12. The performance of the predictor–corrector approach is demonstrated in the
presence of noise. The aberrations to be retrieved are listed in table 4 and the reconstruction
errors j�mn � �̂�m

n ðkÞj are plotted at each iteration k ¼ 1, . . . , 10 for the cases SNR ¼ 1, 100, 10
in (a), (b) and (c) respectively. The presence of noise in the measurement imposes a limit to the
convergence of the predictor–corrector approach.
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j�m
n j < �0

0 ¼ 1, but we also have examples with some j�m
n j (considerably)

larger than �0
0 with good results. From the plots in figure 12(a)–(c) it is

seen that the reconstruction errors saturate at a certain level depending
clearly on the SNR. We also have observed that increasing sample
densities has a beneficial effect on the saturation levels of the reconstruction
errors.

5. Extension of the method

The methods for retrieval of the aberration coefficients presented in sections 3 and 4
assume relatively low NA and use of an illumination source of very small lateral
size so that the pupil is uniformly illuminated. For higher values of NA (�0:60),
the conventional approximation exp ½if �2�, describing defocusing in the diffraction
integral, is not adequate anymore. The true function is given by

exp if
1� ð1�NA2�2Þ1=2

1� ð1�NA2
Þ
1=2

� �
, 0 � � � 1, ð58Þ

in these cases. At the same time, for higher values of NA, one cannot ignore the
radiometric effect anymore. Accordingly, the aberration-free pupil function P � 1
(0 � � � 1) should be changed into

ð1�NA2�2Þ�1=4, 0 � � � 1: ð59Þ

In addition to this, for high values of NA (�0:80), a scalar treatment is not
adequate anymore and also the state of polarization should be taken into account,
see [30]. For a large part of the medium–high NA regime such as ½0:60, 0:80� and
when using natural light, it is, however, sufficient to correct according to (58)
and (59).

A further complication is caused by the realistic circumstance that one would
like to use illumination sources of a non-negligible size so as to have available
sufficiently large illumination amplitudes. When the source is a transparent hole of
radius a, the pupil function should, in addition, be multiplied by the Fourier
transform,

J1ð2pa�Þ=pa�, 0 � � � 1, ð60Þ

of a normalized disc of radius a.
In this section we present simple measures to take these and similar effects into

account, and we present simulation results to show efficacy of these measures.

5.1 Description of approach

Taking the effects represented by (58)–(60) into account, the diffraction integral in
(4) should be replaced by
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Uðr, ’; f Þ ¼
1

p

ð1
0

ð2p
0

exp ½Fð�; NA, aÞ�Pð�,#Þ exp ½2pi�r cosð#� ’Þ�� d� d#, ð61Þ

where Pð�,#Þ ¼ Að�,#Þ exp ½iFð�,#Þ� is the pupil function and

Fð�; NA, aÞ ¼ if
1� ð1�NA2�2Þ1=2

1� ð1�NA2
Þ
1=2

�
1

4
ln ð1�NA2�2Þ

þ ln
hJ1ð2pa�Þ

pa�

i
, 0 � � � 1: ð62Þ

For values of NA between 0.6 and 0.8 the function at the right-hand side
on the first line of (62) is well approximated by a function of the form cþ d�2.
Similarly, for values of the radius a in (60) up to the substantial value of 0.4, the
function on the second line of (62) admits such an approximation as well. Thus,
approximating

Fð�; NA, aÞ � ~ggþ i ~ff �2, ð63Þ

we see that U in (61) is approximated as

Uðr, ’; f Þ �
exp ð ~ggÞ

p

ð1
0

ð2p
0

exp ði ~ff �2ÞPð�,#Þ exp ½2pi�r cosð#� ’Þ�� d� d#: ð64Þ

Apart from the factor exp ð ~ggÞ, the right-hand side of (64) is exactly of the form (4).
This means that the retrieval methods developed in sections 3 and 4 can be applied
in the present case as well, just by replacing all Vm

n ðr, f Þ by exp ð ~ggÞVm
n ðr, f Þ.

We shall now address the problem of quadratic approximation of a function as
we have in (62) for the range 0 � � � 1. For a smooth function

Fð�Þ ¼ a0 þ a1�
2 þ a2�

4 þ � � � , 0 � � � 1, ð65Þ

the optimal quadratic approximation ĉcþ d̂d�2, in the sense that the root mean square
error

EðF ; c, dÞ ¼ 2

ð1
0

jFð�Þ � c� d�2j2� d�

� �1=2

ð66Þ

is minimal for c ¼ ĉc, d ¼ d̂d, is given by

f0R
0
0ð�Þ þ f2R

0
2ð�Þ ¼ ð f0 � f2Þ þ 2f2�

2: ð67Þ

Here f0, f2 are the first two coefficients in the Zernike0 expansion Fð�Þ ¼
P1

n¼0

f2nR
0
2nð�Þ of F. While these optimal approximations can be obtained in a completely

analytic way in many cases (including for the two functions on the first line on
the right-hand side of (62), but not for the function on the second line), the
developments are rather cumbersome and do not add much insight. Instead,
we propose below a device that produces in almost all cases a result of a quality
comparable to the optimal result. This device is simple and can be applied in all cases
where F is given numerically or analytically. Hence, it equally applies when there
are other, application-dependent, effects than those in (58)–(60) that have to be
accounted for.
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We approximate

Fð�Þ � ~ccþ ~dd�2, 0 � � � 1, ð68Þ

where

~cc ¼ 2
3
Fð0Þ þ 2

3
Fð1

2
21=2Þ � 1

3
Fð1Þ; ~dd ¼ Fð1Þ � Fð0Þ: ð69Þ

This approximation results when the fourth degree polynomial b0 þ b1�
2 þ b2�

4,
which coincides with F(�), at � ¼ 0, ð1=2Þ21=2, 1, and is approximated by a second
degree polynomial cþ d�2 with minimal RMS error value, see (66). It turns out that,
when it does make sense to approximate F by a quadratic, the approximation in (68)
and (69) is very near to the optimal approximation given above. To demonstrate this,
we have included table 6 that shows RMS errors

ÊEn :¼ Eð�2n; ĉc, d̂dÞ, ~EEn :¼ Eð�2n; ~cc, ~ddÞ ð70Þ

for various values of n ¼ 0, 1, . . . . We see from table 6 that rule (68) and (69) yields
the optimal choice for n ¼ 0, 1, 2, while significant worse performance only occurs
for n beyond 5.

We give two examples, relevant in the present context, in which the optimal
approximation and the one according to (68) and (69) are compared. We have

1� 1� ð0:8Þ2�2
� 	1=2

� �0:014166þ 0:395�2

� �0:016414þ 0:4�2, ð71Þ

where the first line gives the optimal approximation, with RMS error 0.00731, and
the second line gives the approximation in (68) and (69), with RMS error 0.00746.
Also we have with a ¼ 1=p in (60)

ln
J1ð2�Þ

�

� �
� 0:008684� 0:549298�2

� 0:009209� 0:550390�2, ð72Þ

where the first line gives the optimal approximation, with RMS error 0.004116,
and the second line gives the approximation in (68) and (69), with RMS error
0.004129.

Table 6. RMS error ÊEn, ~EEn for Fð�Þ ¼ �2n.

n ÊEn
~EEn

0 0 0
1 0 0
2 0.0745 0.0745
3 0.1134 0.1170
4 0.1333 0.1455
5 0.1436 0.1669
10 0.1488 0.2297
100 0.0068 0.3211
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5.2 Simulations

(a) We consider an aberration-free pupil function P � 1, so that �m
n ¼ �m0�n0,

and we assume a non-zero value for NA and a¼ 0 in the diffraction integral
(61). We have not been able to find a (simple) analytic computation scheme
for the resulting U in (61) (an analytic but complicated scheme has been
presented in [61], Appendix B). Therefore, we have chosen to approximate
the U of (61) by the right-hand side of (64) with ~ff , ~gg given by the device
developed in (68) and (69). In figure 13(a) and (b) we show the reconstruction
errors for �0

0, �
0
2, �

0
4, where the measured intensity jUj2 (� j right-hand side of

(64)j2) is being matched using the original, uncorrected Vm
n ðr, f Þ (figure 13(a))

and the corrected exp ½ ~gg�Vm
n ðr,

~ff Þ (figure 13(b)) respectively. We may con-
centrate on the systems in (51) (m¼ 0) and we use n, n0 ¼ 0, 2, 4. We thus see
that serious errors occur in the uncorrected case while errors on the level of
machine precision occur (as is to be expected) in the corrected case. The solid
lines in figure 13(a) and (b) indicate best fit c1NA2

þ c2NA4
þ c3NA6 to the

reconstruction errors at NA ¼ 0 to NA ¼ 0:9.
(b) We next consider an aberration-free pupil function P � 1, where we now

assume NA ¼ 0 and a ¼ b=2p > 0 in the diffraction integral in (61). Accord-
ingly, U is now given by

Uðr,#; f Þ ¼

ð1
0

2J1ðb�Þ

b�
exp ðif�2ÞJ0ð2p�rÞ� d� ð73Þ

and the measured intensity can be computed as j2
P

p CpðbÞV
0
2pj where the

Zernike coefficients Cp(b) in the appendix, (A 26) and (A 27), of 2J1ðb�Þ=b�
are used and p ¼ 0, 1, 2. In figure 14(a) and (b), we show the reconstruction
errors for �0

0,�
0
2,�

0
4 where the measured intensity is being matched using the

Figure 13. Reconstruction errors for an aberration-free pupil using (a) the uncorrected
Vm

n ðr, f Þ and (b) the corrected exp ½ ~gg�Vm
n ðr,

~ff Þ for various values of NA.
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original, uncorrected Vm
n ðr, f Þ (figure 14(a)) and the corrected exp ½ ~gg�Vm

n ðr,
~ff Þ

(figure 14(b)), respectively. The correction quantities ~ff , ~gg were computed
using the device developed in (68) and (69). We thus see that the serious
reconstruction errors in the uncorrected case are almost eliminated for a
as large as 0.4 by correcting the Vm

n functions. This is especially so for �0
0,�

0
2,

but not for �0
4 (which is to be expected).

(c) We repeat the previous exercise with a comatic pupil function Pð�,#Þ ¼
exp ½i�Z1

3ð�,#Þ�, �¼ 0.1. The measured intensity can be computed as
j2
P

n,m �m
n V

m
n ðr, f Þ cosm#j2 with �m

n given in the appendix, (A 19) and
(A 20), where the summation extends over all relevant m, n with
m � 4, n � 9. We aim at retrieving the quantities 1

3�
m
n ð�Þ of the appendix,

(A 18), these being the Zernike coefficients of the pupil function P. In
figure 15(a) and (b) we show the reconstruction errors for �0

0,�
1
3,�

0
4,�

2
6

without and with corrections being made on the Vm
n functions. The retrieval

is hence performed for m ¼ 0, 1, 2 and n ¼ n0 ¼ ½0, 2, 4, 6, 8�, ½1, 3, 5, 7, 9�,
½2, 4, 6, 8� respectively. Furthermore, in figure 16 we see what happens
when the predictor–corrector approach is used.

From figure 15(a) we see that the error in the amount of coma being
retrieved is increasing with hole size a. In figure 15(b) we see that when using
the corrected Vm

n functions, the amount of coma is retrieved accurately up to
a hole size a ¼ 0:4 and then increases. However, the result for a ¼ 0:4 is still
satisfactory. Moreover, the application of the correction on the Vm

n functions
delivers very accurate estimates of the DC term of the transmission, as can
be seen in the top graph of figure 15(b). In figure 16(a) and (b) we see again
the effect that the initial guesses are all better when using the corrected
Vm

n functions. Moreover, we see that the reconstruction errors after a few
iterations settle at much smaller values.

Figure 14. Reconstruction errors for an aberration-free pupil using (a) the uncorrected
Vm

n ðr, f Þ and (b) the corrected exp ½ ~gg�Vm
n ðr,

~ff Þ for various hole sizes a ¼ b=2p.
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6. Conclusions and outlook

We have presented and analysed a method for the retrieval of pure-phase aberrations

and its extension to the case of retrieval of general aberrations from the observation

of the intensity point-spread function in the focal region. In these methods, the

complex amplitude of the point-spread function is represented in terms of the

Zernike coefficients describing the aberrated pupil function, and these coefficients

are estimated by matching the observed intensity and the (linearized) theoretical

intensity in the focal region. We have discussed particular features of either method,

such as occurrence of third-order error behaviour in the pure-phase retrieval method

Figure 15. Reconstruction errors of four different coefficients as a function of hole size a.
Coma �¼ 0.1. Reconstruction using (a) uncorrected and (b) corrected Vm

n functions.
Note the different scales on the vertical axes.
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and the potential of perfect reconstruction by adopting a predictor–corrector

approach for the general retrieval method, and we have briefly indicated their

application range by presenting results of simulations. While the pure-phase method

gives good results for aberrations up to somewhat below the diffraction limit, the

general method (in its predictor–corrector version) seems to be capable of retrieving

aberrations well beyond this limit. The methods have been extended in a simple and

straightforward way to the case of medium–high numerical apertures and to the case

that the illumination source has a lateral size somewhat larger than the diffraction

unit.

There are many more things that could have been simulated, but we have

restricted ourselves here to those simulations that highlight characteristic features

of the methods. We now list a number of issues that should be addressed when the

methods are considered in more detail with respect to their usefulness in practice.

This list includes

(a) investigation of the required sizes of the linear systems from which the

estimates are extracted,

(b) a more extensive investigation of the effects of the various discretization and

finitization operations,

(c) a more extensive investigation of the influence of various types of noise,

(d) influence of instrument function for data acquisition,

(e) the effects of mismodelling, such as incorrectly specified pupil radius and

numerical aperture, as well as misalignment of the focal planes,

(f) measures to be taken when data acquisition is only possible on a discrete set

of curves,

(g) sensitivity of the methods for DC offsets in the recorded intensities,

(h) consideration of optical systems with a central obstruction,

(i) use of the predictor–corrector method with relaxation,

(j) the impact of the method in section 5 to account for the effects discussed

there on the level of Zernike coefficients.

Figure 16. The effect on the predictor–corrector approach. Hole size a¼ 0.1, coma �¼ 0.1.
Iteration histories (k) using (a) uncorrected and (b) corrected Vm

n functions.
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There are also some fundamental aspects of the methods that should be
addressed. These include an investigation of the problem of (approximately)
representing an intensity Imeas as j

P
n,m �m

n U
m
n j

2, with issues such as existence and
uniqueness of the �’s as well as the choice of appropriate error functionals.
Furthermore, a statistical analysis is needed for the methods aimed at quality
assessment of the estimates obtained from noisy data (Cramer–Rao bounds, etc.).
Such an assessment is also required for the estimates obtained by the methods when
the predictor–corrector option is switched off since these estimates carry an intrinsic
error due to linearizations. Also, further analysis, experiments and simulations are
required to get a better insight into the convergence behaviour of the predictor–
corrector approach, especially when the optical system is heavily aberrated. In this
connection, it would be interesting to further investigate the �’s and their saturation
levels in the cases that the intensities Imeas cannot be perfectly represented as
j
P

n,m �m
n U

m
n j

2 due to noise and/or modelling errors as we had in sections 4 and 5.
The results presented in this paper, as well as experimental results obtained in a
lithographic context, are promising enough so that further investigation of the
method with respect to these and other aspects is justified.

Appendix: Some Zernike expansions

In this appendix we present the Zernike expansions in analytic form of the pupil
functions

exp ½i�R0
4ð�Þ�, exp ½i�R1

3ð�Þ cos#�,
2J1ðb�Þ

b�
, ðA1Þ

that are required for the simulations in sections 3, 4 and 5.
When Pð�,#Þ is a (symmetric) pupil function, its Zernike expansion coefficients

�m
n in

Pð�,#Þ ¼
X
n,m

�m
n R

m
n ð�Þ cosm# ðA2Þ

are given from orthogonality of the Zernike functions, see [23], formula (3) on
p. 523, as

�m
n ¼

1

p
ðnþ 1Þ"m

ð1
0

ð2p
0

Pð�,#ÞRm
n ð�Þ cosm#� d�d# ðA3Þ

with " Neumann’s symbol, "0 ¼ 1, "1 ¼ "2 ¼ � � � ¼ 2.
In the case of exp ½i�R0

4ð�Þ�, all �
m
n with m 6¼ 0 vanish, and for m¼ 0, n¼ 2p we

have

�m
n ¼ 2ð2pþ 1Þ

ð1
0

exp ½i�R0
4ð�Þ�R

0
2pð�Þ� d� ¼: 04�

0
2pð�Þ: ðA4Þ

With

R0
4ð�Þ ¼ 6�4 � 6�2 þ 1 ¼ 3

2
ð2�2 � 1Þ2 � 1

2
, R0

2pð�Þ ¼ Ppð2�
2 � 1Þ, ðA5Þ
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where Pp is the pth Legendre polynomial, we get by the substitution x ¼ 2�2 � 1 that

0
4�

0
2pð�Þ ¼ pþ

1

2

� �
exp �

1

2
i�

� �ð1
�1

exp
3

2
i�x2

� �
PpðxÞ dx: ðA6Þ

Since Pp(x) is odd in x when p is odd and even in x when p is even, we only have to
consider the case that p¼ 2r in (A 6). By power series expansion of exp ðð3=2Þi�x2Þ we
obtain for p¼ 2r

0
4�

0
4rð�Þ ¼ pþ

1

2

� �
exp �

1

2
i�

� �X1
k¼0

ðð3=2Þi�Þk

k!

ð1
�1

x2kP2rðxÞ dx: ðA7Þ

The remaining integrals in (A 7) can be evaluated by using Rodriguez’ formula, see
[31], formula (10.4) on p. 190,

PpðxÞ ¼
ð�1Þp

2pp!


 d

dx

�p
ð1� x2Þp, p ¼ 0, 1, . . . : ðA8Þ

Thus, by 2r partial integrations, we getð1
�1

x2kP2rðxÞ dx ¼
ð2kÞ!

22rð2rÞ!ð2k� 2rÞ!

ð1
�1

ð1� x2Þ2rx2k�2r dx, k � r, ðA9Þ

while the integral on the left-hand side vanishes for k<r. The remaining integral can
be expressed in terms of the beta-function [32], and we find after some manipulationsð1

�1

x2kP2rðxÞ dx ¼ 4rþ1 ð2kÞ!ðkþ rþ 1Þ!

ð2kþ 2rþ 2Þ!ðk� rÞ!
, k � r: ðA10Þ

Using this in (A 7) and shifting the summation index by r, we obtain

0
4�

0
4rð�Þ ¼ 4 2rþ

1

2

� �
exp �

1

2
i�

� �X1
k¼0

ðð3=2Þi�Þk

k!

ð2kþ 2rÞ!ðkþ 2rþ 1Þ!

ð2kþ 4rþ 2Þ!ðkþ rÞ!
: ðA11Þ

Finally, this can be brought into a hypergeometric form,

0
4�

0
4rð�Þ ¼ exp �

1

2
i�

� �
ðð3=2Þi�Þr

ðrþ ð1=2ÞÞr

X1
k¼0

ðð3=2Þi�Þk

k!

ðrþ ð1=2ÞÞk
ð2rþ ð3=2ÞÞk

, ðA12Þ

after some further manipulations using Pochhammer’s symbol

ðaÞ0 ¼ 1; ðaÞk ¼ aðaþ 1Þ � � � ðaþ k� 1Þ, k ¼ 1, 2, . . . : ðA13Þ

We shall next compute the Zernike expansion coefficients 1
3�

m
n ð�Þ of Pð�,#Þ ¼

exp ½i�R1
3ð�Þ cos#�. The integral in (A 3) over # can be done using (7) and we obtain

1
3�

m
n ð�Þ ¼ 2ðnþ 1Þ"mi

m

ð1
0

Rm
n ð�ÞJmð�R

1
3ð�ÞÞ� d�: ðA14Þ

Inserting the series expansion of Jm, see [32], formula 9.1.10 on p. 360, into the right-
hand side integral in (A 14), we find
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1
3�

m
n ð�Þ ¼ 2ðnþ 1Þ"mi

m
X1
j¼0

ð�1Þ jðð1=2Þ�Þmþ2j

j!ð j þmÞ!

ð1
0

ðR1
3ð�ÞÞ

mþ2jRm
n ð�Þ� d�: ðA15Þ

The remaining integrals can be evaluated by using that R1
3ð�Þ ¼ 3�3 � 2�, Newton’s

binomium, and the fact that, see [29], formula (A 2) on p. 2289,ð1
0

�mþ2sRm
mþ2pð�Þ� d� ¼

1

2
ð�1Þp

ð�sÞp

ðmþ sþ 1Þpþ1

, ðA16Þ

where we have used Pochhammer’s symbol (A 13). This yieldsð1
0

ðR1
3ð�ÞÞ

mþ2jRm
mþ2pð�Þ� d� ¼

1

2
ð�2Þmþ2j

Xmþ2j

l¼0


mþ 2j

l

�
�3

2

�l ð�j � lÞpð�1Þp

ðmþ j þ l þ 1Þpþ1

,

ðA17Þ

and with some final rewriting we obtain

1
3�

m
mþ2pð�Þ ¼ ðmþ 2pþ 1Þ"m

X1
j¼0

ð�i�Þmþ2j

j!ðj þmÞ!



Xmþ2j

l¼0


mþ 2j

l

� ð�1Þpð�j � lÞp

ðmþ j þ l þ 1Þpþ1



�
3

2

�l
: ðA18Þ

In a similar fashion we can determine the Zernike expansion coefficients �m
n of

Pð�,#Þ ¼ Að�Þ exp ½i�R1
3ð�Þ cos#�, where A(�) is an amplitude function admitting

the power series representation Að�Þ ¼
P1

k¼0 ak�
2k. Inserting this power series into

the above derivation, it can be shown that

�m
mþ2p ¼ ðmþ 2pþ 1Þ"m

X1
k¼0

ak
X1
j¼0

ð�i�Þmþ2j

j!ð j þmÞ!



Xmþ2j

l¼0

mþ 2j

l

� �
ð�1Þpð�j � l � kÞp

ðmþ j þ l þ kþ 1Þpþ1

�
3

2

� �l

: ðA19Þ

In section 5.2, point (c), we use this with

2J1ðb�Þ

b�
¼

X1
k¼0

ak�
2k; ak ¼

ð�1Þkðð1=2ÞbÞ2k

k!ðkþ 1Þ!
: ðA20Þ

We finally determine the Zernike expansion of 2J1ðb�Þ=b�. We have that �m
n

vanishes for all m 6¼ 0 and for m¼ 0, n¼ 2p we have

�m
n ¼ 4ð2pþ 1Þ

ð1
0

J1ðb�Þ

b�
R0

2pð�Þ�d� ¼: CpðbÞ: ðA21Þ

Using [32], first identity in 9.1.30 on p. 361, so that

J1ðb�Þ

b�
¼

ð1
0

J0ðb��1Þ�1 d�1, ðA22Þ

we get by changing the order of integration
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CpðbÞ ¼ 4ð2pþ 1Þ

ð1
0

ð1
0

J0ðb��1ÞR
0
2pð�Þ� d�

� �
�1 d�1: ðA23Þ

Using for the inner integral the basic resultð1
0

Rm
n ð�ÞJmð�rÞ�d� ¼ ð�1Þðn�mÞ=2 Jnþ1ðrÞ

r
ðA24Þ

from the ‘classical’ Nijboer–Zernike theory, see [23], formula (9) on p. 525, we get

CpðbÞ ¼ 4ð2pþ 1Þb�2

ðb
0

J2pþ1ðtÞ dt: ðA25Þ

Finally, we use [32], formula 11.1.4 on p. 480, and we find

CpðbÞ ¼ 4ð2pþ 1Þ
ð�1Þp

b2
1� J0ðbÞ � 2

Xp
l¼1

J2lðbÞ

( )
: ðA26Þ

Alternatively, from [32], formula 9.1.10 on p. 360 we readily obtain

CpðbÞ ¼ ð2pþ 1Þ
X1
k¼0

ð�ð1=4Þb2Þkþp

k!ðkþ 2pþ 1Þ!ðkþ pþ 1Þ
: ðA27Þ
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