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Taking the classical Ignatowsky/Richards and Wolf formulas as our starting point, we present expressions for
the electric field components in the focal region in the case of a high-numerical-aperture optical system. The
transmission function, the aberrations, and the spatially varying state of polarization of the wave exiting the
optical system are represented in terms of a Zernike polynomial expansion over the exit pupil of the system; a
set of generally complex coefficients is needed for a full description of the field in the exit pupil. The field
components in the focal region are obtained by means of the evaluation of a set of basic integrals that all allow
an analytic treatment; the expressions for the field components show an explicit dependence on the complex
coefficients that characterize the optical system. The electric energy density and the power flow in the aber-
rated three-dimensional distribution in the focal region are obtained with the expressions for the electric and
magnetic field components. Some examples of aberrated focal distributions are presented, and some basic
characteristics are discussed. © 2003 Optical Society of America
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1. INTRODUCTION
The study of the exact field distribution in the focal region
of a high-numerical-aperture (high-NA) optical system at-
tracts much attention because of the numerous applica-
tions where highly focused fields are used. We mention
the study of biological specimens such as living cells, cell
nuclei, and genetic material with the use of advanced
high-resolution microscopy. High-aperture focused fields
are equally used in leading-edge optical lithography oper-
ating at a deep UV wavelength such as 193 or 157 nm and
using projection systems with an image-side NA as large
as 0.90. In optical disk readout, the recently standard-
ized Blu Ray Disc system1 uses a NA of 0.85 and a wave-
length of 400 nm. All these applications require a de-
tailed knowledge of the field distribution in the focal
region in order to describe the interaction of the probe
with the unknown structure or to accurately predict the
exposure in the recording layer2 (e.g., the photoresist
layer in optical lithography).

It is the purpose of this paper to accurately describe the
vector field in the focal region, starting with the classical
1084-7529/2003/122281-12$15.00 ©
Ignatowsky/Richards and Wolf formulas,3,4 for the
aberration-free case, while maintaining the explicit corre-
spondence between specific properties of the imaging sys-
tem and the field distribution in the focal region. The
standard method to calculate the optical field in the focal
region uses a purely numerical evaluation of the various
diffraction integrals pertaining to the electric and mag-
netic field components. Even in the case of an
aberration-free optical system, these integrals did not
seem to admit an analytic solution. In two recent
papers,5,6 an analytic evaluation of the diffraction inte-
gral has been proposed and assessed; this analysis con-
cerned the scalar diffraction integral for a (heavily) aber-
rated optical system. The method has been termed the
‘‘extended’’ Nijboer–Zernike method because it expands
aberration and pupil functions in Zernike series and pro-
duces manageable expressions for the scalar field through
the focal volume, whereas the expressions in the original
Nijboer–Zernike method become awkward outside the fo-
cal plane. Although the solution consists of an infinite
summation, this summation can be safely truncated when
2003 Optical Society of America
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fulfilling some constraints regarding defocus and NA;
these constraints are met in most practical cases. We
now go further and show that the extended Nijboer–
Zernike approach can also be applied to the more compli-
cated case of an aberrated system with high NA by using
the vectorial diffraction formalism. The combined effects
of amplitude nonuniformity and aberrations are mapped
onto a set of generally complex Zernike coefficients that
describe the field distribution in the exit pupil; the field
distribution in the focal region shows an explicit depen-
dence on these coefficients. The relationship between the
properties of the imaging system and the focal field dis-
tribution paves the way for a possible inverse problem so-
lution, viz., the retrieval of the complex pupil function
from intensity measurements in the focal region. A first
step in this direction has been described in Refs. 7 and 8
for the relatively low-NA (say, below 0.8) scalar problem.

This paper is organized as follows. In Section 2, the
representation of the field in the entrance pupil of the op-
tical system is discussed. Some specific field distribu-
tions are treated, e.g., purely radial or azimuthal
polarization9 and field distributions with an intrinsic non-
zero orbital momentum.10,11 In Section 3, the field in the
entrance pupil, including the radiometric effect, is de-
scribed in terms of an expansion with the aid of Zernike
polynomials. To allow for a general description, we pro-
pose a complex set of Zernike coefficients that can ad-
equately represent both amplitude and phase variations
of the incident field. In Section 4, we present the field
distribution in the focal region in terms of the Zernike co-
efficients, using the analytic approach for solving the
various diffraction integrals. The electric energy density
and the Poynting vector are evaluated with the expres-
sions for the electric and magnetic field components.
Section 5 has been devoted to some practical examples.
In Section 6, we present our conclusions and we formulate
some suggestions for further research on the subject of
this paper.

2. DESCRIPTION OF THE COMPONENTS
OF THE FIELD IN THE PUPIL
In Fig. 1, we have depicted the general situation of an op-
tical system with an entrance pupil S0 and an exit pupil
S1 . The geometrical image plane is found at PI , and a
ray has been drawn, representing the incident and focus-
ing waves in the object and image spaces. The incident
wave, generated by a point source in the infinitely distant
object plane, produces a planar wave front in the entrance
pupil; the amplitude and the phase on the wave front are
denoted by the (in general) complex quantities Bx(r, u)
and By(r, u) for x and y polarizations, respectively. The
x axis is defined here by the polar angle u 5 0. The com-
ponents Bx and By are needed to describe the general
situation when the incident field has been produced by,
e.g., a preceding optical system, yielding an arbitrary
complex-amplitude distribution in the entrance pupil.
While propagating through the optical system, optical
transmission and path-length variations over the cross
section of the wave will change the quantities Bx and By

in an identical way. Birefringence effects and
polarization-dependent phase jumps at transitions be-
tween different optical media give rise to changes that are
different for Bx and By. The polar coordinates (r, u), to-
gether with the constant axial coordinate z, are used to
describe the field components on the entrance pupil plane
S0 ; also, the field components on the exit pupil sphere S1
are described with the aid of the polar coordinates (r, u),
together with the nonconstant axial coordinate z. In
both cases, we normalize the radial coordinate with re-
spect to the radii a0 and a1 of the images of the dia-
phragm in object and image space that define the circular
borders of the entrance and exit pupils. In the image
plane, we use the cylindrical coordinates (r, f, f ) with f
5 0 at the geometrical image plane location. Regarding
the properties of the optical system, we suppose that it
satisfies Abbe’s sine condition12 and that, as stated above,
the object plane is located at infinity. Most optical sys-
tems obey Abbe’s sine condition very closely (e.g., better
than 0.1%) because this is a minimum requirement for an
aberration-free extended image field. The sine condition
for a system with a limited amount of spherical aberra-
tion is well approximated by the expression

r0 5 R sin a, (1)

where r0 is the height of incidence of a particular ray on
the entrance pupil plane, a is the angle with the optical
axis in the image space of the same ray, and R is the ra-
dius of the exit pupil sphere.

We follow the analysis given in Ref. 13 to accommodate
the most general field distribution that can be encoun-
tered in the entrance or exit pupil of an optical system.
The general coherent field is written as the superposition
of two orthogonal polarization states. In our case, we
take the linear polarization states along, respectively, the
x and y axes as basic orthogonal states; a general ellipti-
cal state of polarization is obtained through a linear su-

Fig. 1. Propagation of the incident wave from the entrance pu-
pil S0 through the optical system toward the exit pupil S1 and
the focal region at the image plane PI . The incident wave has a
planar wave front. The unit propagation vector has been de-
noted by s0 , and the meridional and tangential field components
are directed along, respectively, the unit vectors e0 and g0 . Af-
ter propagation through the optical system, the field components
in the exit pupil are projected onto the unit vectors e1 and g1 ,
which form an orthogonal basis with the local propagation vector
s1 . The position on the exit pupil sphere is defined by means of
the cylindrical coordinates (r, u); the position in the image plane
region is defined by the cylindrical coordinate system (r, f, f ).
The maximum aperture (NA) of the imaging pencil is repre-
sented by s0 5 sin amax .
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perposition of the two basic linear states with relative
amplitude weights and a certain phase difference. The
electric field components on the entrance pupil along the x
and y axes can be written as

Bx~r, u! 5 Ax~r, u!exp@i2pW~r, u!#,

By~r, u! 5 Ay~r, u!exp@i2pW~r, u! 1 ie~r, u!#,
(2)

where Ax and Ay are real-valued functions and describe
the field strengths in the x and y directions. W(r, u) is
also real valued and describes the wave-front aberration
in units of l, the wavelength of the light, due to optical
path-length variation common to both polarization states.
The angle e(r, u) is the spatially varying phase difference
that we have chosen to appear in the y component. Non-
zero values of e are caused by birefringence in the optical
system or by polarization-dependent phase jumps at dis-
continuities in the optical system (e.g., air–glass transi-
tions, optical surface coatings, etc.). Note that e can be
restricted to the range [2p, 1p].

As mentioned above, uniform values of Ax, Ay, and e
lead to a uniform polarization state of, in general, an el-
liptical nature. For various reasons, some other polar-
ization distributions have recently attracted much atten-
tion, viz., radial and azimuthal polarization distribu-
tions,9 or, more generally, cylindrical distributions. In
terms of the linear polarization states, we write these dis-
tributions as

Bx 5 A0 cos~u 1 u0!,

By 5 A0 sin~u 1 u0!exp~ie! (3)

for the radially (u0 5 0,p) or azimuthally (u0 5
1
2 p, 3

2 p)
oriented linear (e 5 0) polarization state. This combina-
tion of x- and y-polarized states leads to a distribution in
the pupil as illustrated in Fig. 2.

It is easily shown that a cylindrical distribution of el-
liptically polarized light is obtained by defining the polar-
ization angle e Þ np, where n equals an integer value.
An optical system introducing such a polarization distri-

Fig. 2. Distribution of polarization states over, e.g., the en-
trance pupil for a certain value of the coordinate r. The angle e

is constant over the pupil and equals zero; u0 5
1
3 p.
bution imparts orbital angular momentum to the incident
wave; this momentum is preserved and should be de-
tected in the image plane.

3. RADIOMETRIC EFFECT AND ZERNIKE
EXPANSIONS
An essential ingredient in our method for the computa-
tion of the field components in the focal region is the
Zernike expansion of aberrations in which the radiomet-
ric effect is properly accounted for. The radiometric ef-
fect appears in an aplanatic optical system, conjugated at
infinity on the object side, that obeys Abbe’s sine condition
[see Ref. 14, Subsec. 8.6.3(b)]. As a consequence, the
modulus of the complex amplitude in the exit pupil con-
tains an intrinsic factor involving the numerical aperture
NA 5 sin a 5 s0 and a factor B(r, u) that is specific for
the pupil filling at the entrance of the optical system and
for its transmission properties. Note that the pupil func-
tion has been described here in terms of the polar coordi-
nates (r, u), where r is the perpendicular distance of a
point on the exit pupil sphere (radius R) to the optical
axis. The intrinsic factor is given explicitly as (1
2 s0

2r2)21/4, i.e., the aberration factor B(r, u) should be
divided by the square root of a cosine. Had we used
spherical coordinates (z, u) for denoting a general point on
the pupil sphere, the radiometric factor due to the sine
condition would appear as Acos z in the numerator.

We thus expand for the x-polarized field component,

Bx~r, u!

~1 2 s0
2r2!1/4

5
Ax~r, u!

~1 2 s0
2r2!1/4

exp@i2pW~r, u!#

5 (
n,m

bnm
x Rn

umu~r!exp~imu!, (4)

where the summation is over all integer n, m with n
2 umu > 0 and even. We refer to Ref. 14 (Sec. 9.2 and
Appendix VII) for general information about the Zernike
polynomials Rn

umu(r) and their use in the theory of optical
aberrations. We may point out here that we use Zernike
expansions involving the complex exponential exp(imu),
integer m, rather than expansions involving the real
trigonometric functions cos(mu), sin(mu), integer m > 0.
The latter type of expansion is appropriately used when
the real phase function W(r, u) is to be expanded into a
Zernike series as in Ref. 14 (Sec. 9.2). Since we expand
the full aberration, corrected for the radiometric effect,
complex values enter the scene naturally and there is no
reason to insist on real expansion functions. The formu-
las that result in the sequel by using complex exponen-
tials rather than trigonometric functions are more concise
and convenient.

The bnm
x in Eq. (4) are given by

bnm
x 5

n 1 1

p
E

0

1E
0

2p Bx~r, u!

~1 2 s0
2r2!1/4

Rn
umu~r!

3 exp~2imu!rdrdu, (5)

where the factor n 1 1 in front of the double integral is a
consequence of the normalization Rn

umu(1) 5 1, so that
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E
0

1

Rn8
umu

~r!Rn
umu~r!rdr 5

dnn8

2~n 1 1 !
. (6)

Similar considerations hold for the y-polarized field com-
ponent By(r, u), which yields Zernike coefficients bnm

y as
in Eq. (5) by replacing Bx by By. Note that the Zernike
expansion can also include other systematic effects, such
as known aberrations of the imaging system or restric-
tions imposed on the illumination source regarding its di-
mension.

We now present some examples of Zernike expansions
of pupil functions under certain polarization conditions as
we have them in Section 5.

(i) For a constant state of polarization and in the ab-
sence of aberrations, we have Bx 5 By 5 A0 . Hence

bnm
x 5 bnm

y

5
~n 1 1 !A0

p
E

0

1 Rn
umu~r!

~1 2 s0
2r2!1/4

rdrE
0

2p

exp~2imu!du

5 2~n 1 1 !A0dm0E
0

1 Rn
0~r!

~1 2 s0
2r2!1/4

rdr. (7)

In Appendix A, we present a numerically tractable form
for the remaining integral in Eq. (7).

(ii) For the field distribution described by Eqs. (3),
nonuniform x and y components are found. We get (as-
suming u0 5 0, e 5 0 and no aberrations, Ax 5 Ay

5 A0) in a way similar to that given above:

bn,61
x 5 7ibn,61

y 5 ~n 1 1 !A0E
0

1 Rn
1~r!

~1 2 s0
2r2!1/4

rdr,

(8)

and bnm
x 5 bnm

y 5 0 when m Þ 61. For the remaining
integral, see Appendix A.

(iii) We consider a linearly increasing phase function,
linearly polarized so that for some real parameter a,

Bx~r, u! 5 By~r, u! 5 A0 exp~iau!. (9)

We now find that

bnm
x 5 bnm

y

5 ~n 1 1 !A0

exp~i2pa ! 2 1

ip~a 2 m !
E

0

1 Rn
umu~r!

~1 2 s0
2r2!1/4

rdr,

(10)

where the factor @exp(i2pa) 2 1# /ip(a 2 m) is to be inter-
preted as 2dma when a is an integer. See Appendix A for
the remaining integral. An optical system introducing
such a discontinuous phase function imparts orbital an-
gular momentum to the incident wave; this momentum is
also preserved and should be detected in the image plane.
4. EXPRESSIONS FOR THE COMPLEX
AMPLITUDES OF THE CARTESIAN FIELD
COMPONENTS
In this section, we present the basic formulas to be used
for the computation of the complex field components Ex ,
Ey , and Ez in the focal region. Using these components,
we can calculate the Poynting vector at an arbitrary point
in the focal region. With the aid of the Poynting vector,
the energy flow through the focal region is obtained.
When we use the expression for the electric field energy
density, the image plane exposure is obtained in the case
of, for instance, a lithographic projection system, or, alter-
natively, the spatially varying detector signal is found
when a CCD camera is used for detection.

We start by expanding the x-polarized field component
of the exit pupil function into a series involving Zernike
polynomials [see Eq. (4)], taking the radiometric effect
into account. We follow the developments in Ref. 4 for an
aberration-free system and make the transformation from
spherical coordinates (u, f) to cylindrical coordinates
(r, u) on the exit pupil for calculation of the diffraction in-
tegral. Next, we transform the Cartesian coordinate sys-
tem (x, y, z) into a cylindrical coordinate system
(r, f, f ) in the focal region. Explicitly, we substitute
sin u 5 s0r and cos u 5 (1 2 s0

2r2)1/2, sin u (cos u)1/2du
5 s0

2r(1 2 s0
2r2)21/4dr, and k – x 5 2prr cos(u 2 f )

1 ( f/u0)(1 2 s0
2r2)1/2 into Eq. (2.26) of Ref. 4. Next we

perform the integration with respect to u by using Eq.
(2.29) of Ref. 4 to obtain the field components for the gen-
eral case:

Ex
x~r, f, f ! 5 2igs0

2 expS 2if

u0
D(

n,m
imbnm

x exp~imf !

3 E
0

1

Rn
umu~r!expF if

u0
~1 2 A1 2 s0

2r2!G
3 $~1 1 A1 2 s0

2r2!Jm~2prr!

1
1
2 ~1 2 A1 2 s0

2r2!

3 @Jm12~2prr!exp~2if !

1 Jm22~2prr!exp~22if !#%rdr, (11)

Ey
x~r, f, f ! 5 2igs0

2 expS 2if

u0
D(

n,m
imbnm

x exp~imf !

3 E
0

1

Rn
umu~r!

2i

2
expF if

u0
~1 2 A1 2 s0

2r2!G
3 ~1 2 A1 2 s0

2r2!

3 @Jm12~2prr!exp~2if !

2 Jm22~2prr!exp~22if !]rdr, (12)
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Ez
x~r, f, f ! 5 2igs0

2 expS 2if

u0
D(

n,m
imbnm

x exp~imf !

3 E
0

1

Rn
umu~r!2is0r expF if

u0
~1 2A1 2 s0

2r2!G
3 @Jm11~2prr!exp~if !

2 Jm21~2prr!exp~2if !]rdr, (13)

where the quantity g 5 pR/l is a proportionality con-
stant. In the formulas above, the upper index of each
field component is related to the polarization component
of the light in the entrance pupil. The radial image plane
coordinate r is expressed in units of l/s0 , the diffraction
unit in the image plane. The quantity f is the defocus pa-
rameter, related to the real-space axial coordinate z by

f 5 2
2pu0

l
z, (14)

u0 5 1 2 A1 2 s0
2. (15)

The integral expressions in Eqs. (11)–(13) have common
characteristics and, when we use @1 2 (1 2 s0

2r2)1/2#@1
1 (1 2 s0

2r2)1/2# 5 s0
2r2, the resulting electric field vec-

tor in the image space is given by

Here we have introduced, for j 5 22, 21, 0, 1, 2, the in-
tegral

Vnm, j 5 E
0

1

r u ju~1 1 A1 2 s0
2r2!2u ju11

3 expF if

u0
~1 2 A1 2 s0

2r2!G
3 Rn

umu~r!Jm1j~2prr!rdr. (17)

The above integral shows a resemblance with a basic in-
tegral Vnm(r, f ) appearing in the scalar treatment of the
diffraction problem as given in Refs. 5 and 6:

Vnm~r, f ! 5 E
0

1

exp~ifr2!Rn
umu~r!Jm~2prr!rdr,

(18)

with the Bessel-series representation

Ex~r, f, f ! 5 2igs0
2 expS 2 if

u0
D(

n,m
imbnm

x exp~imf !S Vnm

2

Vnm~r, f ! 5 em exp~if !(
l51

`

~22if !l21

3 (
j50

p

vlj

J umu1l12j~2pr !

l~2pr !l
. (19)

In Eq. (19), we have em 5 21 for odd m , 0 and em
5 1 otherwise, and with p 5 (n 2 umu)/2, q 5 (n
1 umu)/2 the coefficients vlj are given as

vlj 5 ~21 !p~ umu 1 l 1 2j !S umu 1 j 1 l 2 1
l 2 1 D S j 1 l 2 1

l 2 1 D
3S l 2 1

p 2 j D Y S q 1 l 1 j
l D (20)

for l 5 1, 2,..., j 5 0,1,...,p. For accuracy within an ab-
solute value of 1026, summation can be truncated after a
maximum of l 5 u3f u terms.

In the limiting case of a vanishing NA (s0 → 0), the ex-
pressions for the field components Ey and Ez result in a
value of zero, and we observe that the field component Ex
then yields the value corresponding to scalar diffraction.

In the general case, compared with Vnm(r, f ), the in-
tegrand of Vnm, j(r, f ) shows a more complicated depen-
dence on r and f because of the appearance of r u ju and the
other two factors containing s0 . Moreover, the upper in-
dex of the Zernike polynomial and the order of the Bessel

function are not identical; this was an essential condition
for arriving at the series expression for Vnm(r, f ). In
Appendix B, we will show in detail how the integral
Vnm, j(r, f ) can be written systematically as a series of in-
tegrals Vnm(r, f ) by finding a suitable expansion for the
functions r u ju@1 1 (1 2 s0

2r2)1/2#2u ju11 exp$(if/u0)@1 2 (1
2 s0

2r2)1/2#% in Eq. (17). Here we just outline the succes-
sive steps to be taken for finding the coefficients of the ex-
pansion.

• We start by formally writing

~1 1 A1 2 s0
2r2!2u ju11 expF if

u0
~1 2 A1 2 s0

2r2!G
5 exp~ gj 1 ifjr

2!(
k50

`

hkjR2k
0 ~r!, (21)

where the coefficients gj and fj are defined by requiring
the best fit for the constant and the quadratic term in r.
The series of Zernike polynomials with coefficients hkj
will be normally limited to a constant term h0j close to
unity, and a relatively small higher-order term h2j . If
the value of s0 , the geometrical NA, approaches a value

s0
2

2
Vnm,2 exp~2if ! 1

s0
2

2
Vnm,22 exp~22if !

Vnm,2 exp~2if ! 1
is0

2

2
Vnm,22 exp~22if !

s0Vnm,1 exp~if ! 1 is0Vnm,21 exp~2if !

D . (16)
,0 1

is0
2

2
2i
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of, say, 0.90 or the defocus parameter exceeds the value of
2p, higher-order coefficients hkj are needed.

• For the integral Vnm, j(r, f ) to be reduced to the
analytically known result Vnm(r, f ), the upper index of
the Zernike polynomial and the order of the Bessel func-
tion should be identical. To achieve this goal, we note
that in general the following relationships between
Zernike polynomials can be established:

r u juRn
umu~r! 5 (

s50

u ju

cnumu jsRn1u ju22s
umu1j ~r!. (22)

These relations were already derived in Ref. 15 for u ju
5 1, 2, and they are reproduced in Appendix B.

• Having determined the two or three new Zernike
polynomials that we denote by Rn1u ju22s

umu1j (r), we need to
evaluate products of these Zernike polynomials with a
general polynomial R2k

0 (r) that appeared in the first step.
We will write in Appendix B,

R2k
0 ~r!Rn1u ju22s

umu1j ~r! 5 (
t50

`

dnumu jsktRn1u ju22s12t
umu1j ~r!, (23)

and we will show that the number of terms t in this sum-
mation is normally limited to three.

When the above steps are combined, it thus appears
that Vnm, j can be written as a linear combination of a
modest number of terms of the form
Vn1u ju22s12t,m1j(r, fj)exp( gj).

Having indicated the way to reduce the integrals
Vnm, j(r, f ) to the known type Vnm(r, f ), we now return
to the expressions for the electric field components. The
y-polarized component Ey of the electric field in the en-
trance pupil yields an electric vector in image space ac-
cording to

B~r, f, f ! 5 2
inrgs0

2

c
expS 2 if

u0
D(

n,m
im exp~imf !

3 S 2bnm
y Vnm,0 2

s0
2

2
~bnm

y 1 ibnm
x !V

bnm
x Vnm,0 2

s0
2

2
~bnm

x 2 ibnm
y !Vn

2s0~bnm
x 2 ibnm

y !Vnm,1 e
The magnetic induction components B are obtained from
the electric components according to

B 5
s 3 E

v
, (25)

where s is the unit propagation vector from a point in the
exit pupil to the focal plane and v is the speed of propa-
gation of the light (equal to c in vacuum). Using Eq. (24),
we write the magnetic induction vector components as

where nr denotes the refractive index of the dielectric me-
dium.

Formal expressions for the electric energy density and
the Poynting vector. When we focus our attention on the
electric energy per unit volume in the focal region, we do
not explicitly need the magnetic induction components.
For light energy detection purposes (photographic plate,
photoresist, CCD detector, etc.), the time-averaged value
of the electric field energy density ^We& has to be consid-
ered, and for a harmonic field in a homogeneous medium
with a dielectric constant e, this yields

^We& 5
e0

4
nr

2uEu2. (27)

The electric field components from Eqs. (16) and (24) are
used to compute the scalar product E* – E.

To examine the energy flow through the focal region, we
have to evaluate the time-averaged values of the Carte-
sian components of the Poynting vector S, and this leads
to the expression

^S& 5
e0c2

2
Re~E 3 B* !. (28)

Because of their lengths, we do not present here the ex-
plicit analytic expressions for ^We& and ^S&.

exp~2if ! 2
s0

2

2
~bnm

y 2 ibnm
x !Vnm,22 exp~22if !

exp~2if ! 2
s0

2

2
~bnm

x 1 ibnm
y !Vnm,22 exp~22if !

if ! 2 s0~bnm
x 1 ibnm

y !Vnm,21 exp~2if !

D , (26)
Ey~r, f, f ! 5 2igs0
2 expS 2 if

u0
D(

n,m
imbnm

y exp~imf !S 2
is0

2

2
@Vnm,2 exp~2if ! 2 Vnm,22 exp~22if !#

Vnm,0 2
s0

2

2
@Vnm,2 exp~2if ! 1 Vnm,22 exp~22if !#

2s0@Vnm,1 exp~if ! 1 Vnm,21 exp~2if !#

D . (24)

nm,2

m,2
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5. HIGH-NUMERICAL-APERTURE FOCAL
FIELD DISTRIBUTIONS
In this section, we present some illustrative examples of
the electromagnetic field distribution in the focal region
that have been obtained with our analytic approach. We
also briefly comment on the computational aspects of the
method.

A. Focal Field Distributions
We start by considering the aberration-free case and a lin-
ear state of polarization in the entrance pupil. At
low-NA values, a uniform amplitude and phase distribu-
tion in the exit pupil results in the well-known Airy dis-
tribution in the focal region. To study the high-NA ef-
fects in the aberration-free case, we first evaluate the
Zernike coefficients due to the radiometric effect for a NA
of 0.95 [see Eq. (7)]. To have an acceptable accuracy and
demonstrate the strength of our method, we have consid-
ered Zernike coefficients with m 5 0 and a maximum
lower index up to n 5 16, and up to k 5 12 coefficients in
the expansion of Eq. (7) [more exactly, N 5 4 in Eq. (B26)
of Appendix B and a third-order Taylor expansion of Eq.
(B25)].

In Fig. 3, we have plotted the in-focus energy density at
the high-NA value of 0.95 as a function of the radial coor-
dinate r; the incident field is linearly polarized along the x
axis (u 5 0). The dotted curve corresponds to the energy
density distribution along the x axis, and the dashed
curve applies to the y axis (u 5 p/2). As a comparison,
the scalar intensity distribution (Airy function) has been
shown (solid curve). As is well-known from previous
publications (e.g., Ref. 4), the distribution in the cross sec-
tion with u 5 0 is significantly broader than the Airy dis-
tribution. The calculations show that in the cross section
u 5 p/2 the FWHM of the energy density function be-
comes slightly smaller than the FWHM of the Airy distri-

Fig. 3. Comparison of the energy density function in the
high-NA focus ( f 5 0) and the scalar Airy distribution as a func-
tion of the radial coordinate r. The energy density function in
the cross section u 5 0 is represented by the dotted curve, and
the one in the cross section u 5 p/2 by the dashed curve. The
scalar Airy distribution is shown by the solid curve. The fact
that the dashed high-aperture curve does not reach very low lev-
els is due to the sampling density used in plotting this curve.
bution and that the sidelobes are more pronounced. This
would be consistent with the observation that the ampli-
tude distribution on the exit pupil in terms of the radial
coordinate r increases toward the rim of the pupil as a re-
sult of the radiometric effect.

We also executed a numerical evaluation of the solution
as given by Ref. 4 and compared this result with our
quasi-analytic solution. A discrepancy of less than 1026

in intensity was observed, depending on the point density
when carrying out the numerical integration.

In Figs. 4 and 5, we show the logarithm of the modulus
of the x component of the electric field along, respectively,
the x and y axes (the incident field is polarized along the x
axis). Considering the positions of the first zeros in the
focal plane along the x and y axes, we again observe a ra-
tio of the widths of these energy density cross sections of

Fig. 4. Modulus of the x-polarization component of the electric
field distribution in the focal region along the x axis (u 5 0).
The amplitude of the field component is indicated by a gray level
on a logarithmic scale, and the contours denote equiphase lines.
The radial coordinate r has been normalized with respect to the
diffraction unit l/s0 , and the axial coordinate with respect to the
quantity u0 [see Eq. (15)].

Fig. 5. Modulus of the x-polarization component of the electric
field distribution in the focal region along the y axis (u 5 p/2).
The amplitude of the field component is indicated by a gray level
on a logarithmic scale, and the contours denote equiphase lines.
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typically 80%. As we noted above, this asymmetric effect
is well-known and has been numerically evaluated
before.4,16

In Figs. 6 and 7, the corresponding y and z components
(moduli) of the electric field have been shown along the di-
agonal x 5 y and the x axis, respectively. As expected,
the electric field on the optical axis is zero.

The next example applies to an entrance pupil distri-
bution with a radially oriented linear state of polarization
in each point; the modulus of the amplitude and the phase
of the wave are uniform. The resulting Poynting vector
distribution is shown in Fig. 8. The Zernike coefficients
describing the electric field in the exit pupil have been
given in Eq. (7). Again, the NA is as high as 0.95. It is
interesting to note that the Poynting vector distributions
for azimuthally and radially polarized light distributions
in the entrance pupil are identical. This is understood by
the interchangeability of the electric field and the mag-
netic induction for the radial and azimuthal linear polar-
ization states.

The third example is related to the helical phase distri-
bution as defined by the coefficients calculated in Eq. (9).

Fig. 6. Modulus of the y-polarization component of the electric
field distribution in the focal region along the diagonal x 5 y (u
5 p/4).

Fig. 7. Modulus of the z-polarization component of the electric
field distribution in the focal region along the x axis (u 5 0).
The helical structure of the incoming wave front carries
orbital angular momentum, and from Fig. 9 it can be con-
cluded that this angular momentum is still present in the
focal plane (a detailed analysis should show that it is ef-
fectively preserved). The Poynting vector distribution is
given for a 0.95-NA imaging system.

It can be proven that, within the approximations of the
model and for the chosen aberrations, all shown distribu-
tions are symmetric either with respect to the focal plane
or with respect to the geometrical focal point; therefore
we have chosen to plot only the values along the positive z
axis.

B. Further Aspects of Our Approach
We have not yet optimized our computational schemes
with respect to computation time; neither have we yet
made an extensive comparison in this respect with exist-
ing numerical software packages. For a list of advan-
tages of our analytic approach over strictly numerical
methods, we refer to Ref. 6 (Subsec. 4.B). In particular,
we may point out that the variables and the coefficients r,
f, f, and b all occur in a separated form in our formulas
for the field components. This means, for instance, that
the computational load is reduced substantially when one
or more of the variables r, f, and f is fixed. Our method

Fig. 8. A radially polarized entrance pupil distribution yields a
radially symmetric Poynting vector distribution in the focal re-
gion. The absolute value of the Poynting vector is indicated by a
gray level on a logarithmic scale, and its direction is given by a
set of arrows. Note that the value in the geometrical focus
equals zero.

Fig. 9. A helical phase distribution in the presence of a linear
polarization state in the entrance pupil yields a rotating Poyn-
ting vector field in the focal region. The absolute value of the
Poynting vector is indicated by a gray level on a logarithmic
scale, and its direction is given by a set of arrows.
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for evaluating the Zernike coefficients is based on the
computation of individual inner products. More efficient
and stable methods employing global Fourier techniques
are possible but have not been implemented yet.17 We
intend to use these potential high-speed computational
methods so as to achieve near-real-time three-
dimensional visualization of the focal fields such as that
shown in Figs. 4–9. Varying states of polarization and
aberration could be effectively handled by fully exploiting
the basic separation of variables and coefficients in our
analysis.

Finally, we would like to draw attention to another as-
pect of our analysis: the explicit dependence of, e.g., the
field energy density on our b coefficients. The latter rep-
resent the particularities of the optical system, e.g., its
aberration and transmission nonuniformity. In Ref. 7, a
method has been pointed out to retrieve the aberrational
data of an optical system from the through-focus intensity
distribution. This method is based on a scalar treatment
of the diffraction problem, but the radiometric effect aris-
ing at high-NA values can be included (see Ref. 8). The
method is based on the Zernike expansion of the unknown
complex pupil function, whose coefficients have to be
found by a matching procedure. In a future paper, we
will extend the method from Ref. 8 to the fully vectorial
diffraction problem. The method being based again on a
matching of the b coefficients, it can be conceived only in
an analytic framework such as the one that we have de-
scribed in this paper.

6. CONCLUSIONS
We have demonstrated that it is possible to extend an
analytic result applying to Nijboer–Zernike diffraction in-
tegrals from the scalar case to the fully vectorial case.
The radiometric amplitude effects, the wave aberration,
and the polarization state of the wave in the exit pupil are
included in an analytic procedure that makes multiple
use of our ‘‘extended’’ Nijboer–Zernike expression for the
diffraction integral. Two sets of complex Zernike coeffi-
cients, one for each orthogonal state of polarization, is
sufficient to describe the electromagnetic field in the focal
region.

The feasibility of our method is proven by the calcula-
tion of extremely high-NA examples over a large range of
both the radial as well as the axial coordinate. Although
the examples in this paper do not contain a large amount
of aberration, the Zernike coefficients describing the sys-
tem have large values of the indices n and m, caused by
the inclusion of the radiometric effect. Practical limits
for the radial and total axial excursion are of the order of
20 diffraction units in both orthogonal directions; a
simple convergence criterion determines to what extent
the analytic series expansion of the diffraction integral
has to be continued.

A comparison of computational speed between our ana-
lytic approach and purely numerical methods has been
planned for the near future. We also intend to further
exploit the analytic nature of our solution in order to ob-
tain a retrieval scheme for the aberration and transmis-
sion defects of an optical system with use of the complex
Zernike coefficients. Earlier work on a retrieval scheme
for the scalar diffraction problem has shown promising re-
sults; the next step is its extension to the fully vectorial
case.

APPENDIX A: RADIOMETRIC EFFECT AND
ZERNIKE INTEGRALS
In this appendix, we evaluate the integral

Im12p
m 5 E

0

1 Rm12p
m ~r!

~1 2 s0
2r2!1/4

rdr, m, p 5 0, 1,...,

(A1)

in a form that is convenient for numerical computation.
We start from the result, valid for a . 21,

where we have used Pochhammer’s symbol [see Ref. 18,
Eq. (6.1.21), p. 256]:

~a !0 5 1, ~a !n 5 a~a 1 1 ! 3 ¯ 3 ~a 1 n 2 1 !,

n 5 1, 2,... . (A3)

This result is readily proven as follows. It is well known
(see Ref. 14, Appendix VII, Sec. 2) that

Rm12p
m ~r! 5 rmPp

~0,m !~2r2 2 1 !, (A4)

where Pk
(a,b) is the Jacobi polynomial in the notation of

Ref. 19 (Chap. 4). Substituting z 5 2r2 2 1 into the in-
tegral in Eq. (A2) and noting the Rodrigues formula

Pp
~0,m !~z ! 5

~21 !p

2pp!
S d

dz D
p

@~1 2 z !p~1 1 z !p1m#, (A5)

we obtain Eq. (A2) by p partial integrations and some ad-
ministration.

From the Taylor expansion of (1 2 x)21/4 around x
5 0,

~1 2 x !21/4 5 (
k50

` ~
1
4 !k

k!
xk, (A6)

it follows from Eq. (A2) that

Im12p
m 5 (

k50

` ~
1
4 !k

k!
s0

2kE
0

1

r2kRm12p
m ~r!rdr

5
1

2
~21 !p(

k50

` ~
1
4 !k

k!

~
1
2 m 2 k !p

~
1
2 m 1 k 1 1 !p11

s0
2k . (A7)

We observe that

0 <
~

1
4 !k

k!
<

1

G~
1
4 !k3/4

, k 5 1, 2,..., (A8)

and that

E
0

1

raRm12p
m ~r!rdr 5

1

2
~21 !p

~
1
2 m 2

1
2 a!p

~
1
2 m 1

1
2 a 1 1 !p11

,

(A2)
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U ~
1
2 m 2 k !p

~
1
2 m 1 k 1 1 !p11

U <
1

k 1
1
2 m 1 p 1 1

,

k, m, p 5 0, 1,... . (A9)

Hence when s0 is not very close to 1, a modest number of
terms in Eq. (A7) is required for accurate evaluation of
Im12p

m .
From Eq. (A7), the integrals in Eqs. (7), (8), and (10)

are readily obtained in a numerically convenient form.

APPENDIX B: REDUCTION OF INTEGRALS
TO BASIC FORM
In this appendix, we give the detailed derivation that is
needed to transform the integral Vnm, j(r, f ) into a series
of integrals Vnm(r, f ).

We shall first show that

A1 2 s0
2r2 5 2

1

2
u0(

n50

` S d0
n21

2n 2 1
2

d0
n11

2n 1 3
D

3 R2n
0 ~r!, (B1)

ln~1 1 A1 2 s0
2r2! 5

1

2
d0 1 lnS u0

d0
D

2
1

2(
n51

` S d0
n

n
2

d0
n11

n 1 1
D R2n

0 ~r!,

(B2)

where

u0 5 1 2 A1 2 s0
2, (B3)

d0 5 S u0

s0
D 2

. (B4)

For this we use the generating functions of R2n
0 and R2n11

1

in the form

(
n50

`

znR2n
0 ~r!

5
1

A~1 1 z !2 2 4zr2
, (B5)

(
n50

`

znR2n11
1 ~r!

5
2r

A~1 1 z !2 2 4zr2@1 1 z 1 A~1 1 z !2 2 4zr2#

(B6)

[see Ref. 14, Appendix VII, Eq. (30), p. 771]. We may
note here that the generating function as given in Ref. 14
[Sec. 9.2, Eq. (7), p. 465] is incorrect because of two minus
signs that should be plus signs. By taking z 5 d0 , so
that
4z

~1 1 z !2
5 s0

2, (B7)

we can write Eq. (B5) as

r

A1 2 s0
2r2

5 ~1 1 d0!(
n50

`

d0
nrR2n

0 ~r!, (B8)

and we can write Eq. (B6) as

d

dr
@ln~1 1 A1 2 s0

2r2!# 5
2 s0

2r

A1 2 s0
2r2~1 1 A1 2 s0
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d0
nR2n11
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By integrating Eq. (B8) from 0 to r, we get

1

s0
2

~1 2 A1 2 s0
2r2! 5 ~1 1 d0!(

n50

`

d0
nE

0

r

%R2n
0 ~% !d%,

(B10)

and by integrating Eq. (B9) from r to 1, we get

ln~1 1 A1 2 s0
2r2! 2 lnS u0

d0
D

5 2d0(
n50

`

d0
nE

r

1

R2n11
1 ~% !d%. (B11)

It remains to evaluate the integrals

E
0

r

%R2n
0 ~% !d%, E

r

1

R2n11
1 ~% !d%. (B12)

As to the first integral in expression (B12), we note that
R2n

0 (%) 5 Pn(2%2 2 1), with Pn as the nth Legendre
polynomial. By Ref. 20 [Eq. (10.10), p. 190], we have

~2n 1 1 !Pn~x ! 5 Pn118 ~x ! 2 Pn218 ~x !, n 5 1, 2,... .
(B13)

Hence

E
0

r

%R2n
0 ~% !d% 5

1

4~2n 1 1 !
@R2n12

0 ~r! 2 R2n22
0 ~r!#

(B14)

for n 5 1, 2,..., where we have used that R2n12
0 (0)

5 R2n22
0 (0) 5 (21)n11. Also,

E
0

r

%R0
0~% !d% 5

1

2
r2 5

1

4
@R2

0~r! 1 R0
0~r!#. (B15)

As to the second integral in expressions (B12), we note
Ref. 15 [Eq. (2.32), p. 30], which implies that

R2n11
1 ~r! 5
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d
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0 ~r! 2 R2n
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for n 5 0, 1,... . Hence

E
r

1

R2n11
1 ~% !d% 5

2 1

4~n 1 1 !
@R2n12

0 ~r! 2 R2n
0 ~r!#

(B17)



Braat et al. Vol. 20, No. 12 /December 2003 /J. Opt. Soc. Am. A 2291
for n 5 0,1,..., where we have used that R2n12
0 (1)

5 R2n
0 (1) 5 1. Inserting Eqs. (B14) and (B15) into Eq.

(B10) and Eq. (B17) into Eq. (B11), we easily obtain the
results in Eqs. (B1) and (B2).

1. Step I
Using the results obtained in the derivation above, we
first write

~2u ju 1 1 !ln~1 1 A1 2 s0
2r2! 1

if

u0
~1 2 A1 2 s0

2r2!

5 ~2u ju 1 1 !(
n50

`

bnR2n
0 ~r! 1 if(

n50

`

anR2n
0 ~r!

5 gj 1 ifjr
2 1 (

n52

`

tnjR2n
0 ~r!. (B18)

The various coefficients are given by

a0 5
1

2
2

1

6
d0 ,

an 5
1

2
S d0

n21

2n 2 1
2

d0
n11

2n 1 3
D , n 5 1, 2,...,

(B19)

b0 5
1

2
d0 1 lnS u0

d0
D ,

bn 5 2
1

2
S d0

n

n
2

d0
n11

n 1 1
D , n 5 1, 2,..., (B20)

gj 5 ~2u ju 1 1 !~b0 2 b1! 1 if~a0 2 a1!, (B21)

fj 5 2fa1 2 2i~2u ju 1 1 !b1 , (B22)

tnj 5 ~2u ju 1 1 !bn 1 ifan , n 5 2, 3,... .
(B23)

For the original expression, we now obtain

~1 1 A1 2 s0
2r2!2u ju11 expF if

u0
~1 2 A1 2 s0

2r2!G
5 exp~ gj 1 ifjr

2!Gj~r!, (B24)

with

Gj~r! 5 expF (
n52

`

tnjR2n
0 ~r!G . (B25)

We remark that the function Gj(r) is what remains after
splitting off an exponential factor consisting of the best
quadratic approximation to the left-hand-side function of
r in Eq. (B18). Consequently, the remaining summation
can be expected to be numerically small, typically signifi-
cantly less than unity. In that case, we write

Gj~r! ' 1 1 (
n52

N

tnjR2n
0 ~r!, N 5 2, 3, or 4.

(B26)
Inspection of Eq. (B23) shows that the coefficients tnj de-
pend linearly on f and in a more complicated way on s0 .
For large values of s0 and large f, it may be necessary to
include the quadratic term

1

2 F (
n52

N

tnjR2n
0 ~r!G 2

(B27)

into the approximation of Gj(r). This occurs only for s0
as large as 0.90 and u f u 5 2p or larger. In that case, one
may use the formula (Ref. 21, Corollary 6.8.3, p. 320)

R2n8
0 R2n

0

5 (
r50

n8 An82rArAn2r

An81n2r

2n8 1 2n 2 4r 1 1

2n8 1 2n 2 2r 1 1
R2n812n24r

0 ,

(B28)

for 0 < n8 < n with

An 5
1

n!
@1 3 3 3 ¯ 3 ~2n 2 1 !# 5

1

2n
S 2n

n D , (B29)

to write the products of Zernike polynomials with upper
index zero in Eq. (B24) as linear combinations of these
Zernike polynomials. Note that now the expansion co-
efficients of Gj depend quadratically on f. The function
Gj can of course also be expanded directly into a Zernike
series (n 5 0), but then the dependence of the coeffi-
cients on f is awkward.

2. Step II
To reduce the expressions for the field components to a
form that is analytically tractable, we need to be able to
adapt the upper index m > 0 of Zernike polynomials ac-
cording to the recursion formulas given by Nijboer.15 The
starting point is the formulas

rRn
m~r! 5

q 1 1

n 1 1
Rn11

m11~r! 1
p

n 1 1
Rn21

m11~r!,

(B30)

rRn
m~r! 5

p 1 1

n 1 1
Rn11

m21~r! 1
q

n 1 1
Rn21

m21~r!,

(B31)

where, as usually, p 5 (n 2 m)/2 and q 5 (n 1 m)/2,
which permit us to raise or to lower the upper index by
one unit. A straightforward calculation yields the ex-
pressions to induce a change of 62 in the upper index:

r2Rn
m~r! 5

~ p 1 1 !~ p 1 2 !

~n 1 1 !~n 1 2 !
Rn12

m22~r!

1
2~ p 1 1 !q

n~n 1 2 !
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q~q 2 1 !

n~n 1 1 !
Rn22

m22~r!,

(B32)
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r2Rn
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The coefficients cnumu js in Section 4 are easily extracted
from the formulas above.

3. Step III
We finally need to write any product R2k

0 Rn
m as a linear

combination of Rn12t
m . From the formulas above and

with R2
0(r) 5 2r2 2 1, we derive

R2
0~r!Rn
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Rn22
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(B34)

with, again, p 5 (n 2 m)/2 and q 5 (n 1 m)/2.
Higher-order polynomials R2k

0 (r) can be written as a
polynomial having the argument R2

0(r) 5 2r2 2 1, ac-
cording to

R2k
0 ~r! 5 Pk@R2

0~r!# 5 (
l50

@k/2#
~21 !l

2k
S k

l D S 2k 2 2l
k D

3 @R2
0~r!#k22l. (B35)

Here Pk is the kth Legendre polynomial, and [k/2] is the
largest integer <k/2. Using Eq. (B35) and then Eq.
(B34) repeatedly, we can write any product R2k

0 (r)Rn
m(r)

as a linear combination of at most 2k 1 1 terms
Rn12t

m (r). Accordingly, in general, we can write

R2k
0 ~r!Rn1u ju22s

umu1j ~r! 5 (
t

dnumu jsktRn1u ju22s12t
umu1j ~r!.

(B36)

In practice, we will observe that the number of required
terms in the series (khkjR2k

0 (r) on the right-hand side of
Eq. (21) is limited to k 5 2 and that we have to proceed to
values of k 5 3 or 4 only at extremely high values of the
NA or at very large defocusing values. Therefore the
computational task does not get out of hand in practical
cases.
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