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ABSTRACT

In this paper we give the proof of principle of a new experimental method to determine the aberrations of an
optical system in the �eld. The measurement is based on the observation of the intensity point spread function
of the lens. To analyse and interpret the measurement, use is made of an analytical method, the so-called
extended Nijboer-Zernike approach. The new method is applicable to lithographic projection lenses, but also
to EUV mirror systems or microscopes such as the objective lens of an optical mask inspection tool. Phase
retrieval is demonstrated both analytically and experimentally. Theory and experimental results are given.
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1. INTRODUCTION

The increased interest in quali�cation methods for lithographic projection lenses may be explained from a
number of factors: projection lens aberrations are known to have an important contribution to linewidth
variation and image misplacement.1, 2 Their impact gets more pronounced with each new technology node due
to the small dimensions compared to the exposure wavelength, i.e. low k1�imaging requires tighter aberration
speci�cations. To minimise the impact of aberrations, modern lithographic lenses have a number of manipulators
to tune speci�c aberration terms. Focal plane deviation, astigmatism, coma and spherical aberration are all
adjustable quantities. Although the lens manufacturer delivers a well optimised lens, the advanced user needs
to balance lens aberrations for optimal performance on speci�c patterns. In addition, aberrations may vary in
time due to lens aging and machine drift.

Although several user tests are available such as an in-situ interferometer3 or various resist based methods,4{6

we have chosen for a di�erent approach. Our approach to determine the lens aberrations is based on the
observation of the intensity point spread function of the lens, a method that has a number of advantages. The
test pattern is the most simple and elementary pattern that exists: an isolated transparent hole in a dark �eld
binary mask. For a suÆciently small hole diameter, small compared to the system resolution, the image will
approximate the point spread function of the lens, that is either recorded in resist or captured by a detector.
Exposing the mask through focus, result in the measurement of the 3D-intensity of the point spread function.
It is noted that the point spread function fully characterises the lens and is independent of the illumination
source. Also, the point spread function contains the information of both the low and high order aberrations.
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From an experimental point of view the procedure is straightforward. The problematic part is therefore not the
experiment, it is the interpretation of the measurement.

To analyse and interpret the measurement, use is made of a new analytical method. The through-focus
image intensity of the point spread function, including the e�ects of aberrations, is described by a recently
found Bessel series representation. This description, called the extended Nijboer-Zernike approach,7, 8 is tailor
made for the inverse problem we have to solve: retrieving the phase defects (aberrations) of the lens from
the intensity measurements in the focal region. Following the new approach, the through-focus point spread
function is expressed as a combination of basic functions. The coeÆcients of these basic functions are identical
to the Zernike coeÆcients and are estimated by optimising the match between the theoretical intensity and the
measured intensity patterns at several values of the defocus parameter.

Phase retrieval by the extended Nijboer-Zernike approach is applicable to lithographic projection lenses,
but also to EUV mirror systems or microscopes such as the objective lens of an optical mask inspection tool.
This paper gives a detailed description of the phase retrieval method and shows the �rst experimental results,
demonstrating the feasibility of our approach.

2. BASIC FORMULAS FOR THE COMPUTATION OF THE COMPLEX
AMPLITUDE OF A POINT SPREAD FUNCTION

The point spread function is the image of a mathematical delta function, but in practice an object having a
diameter of the order of � �

2NA
is a fair approximation. The complex amplitude of a point spread function is

denoted as U(x; y). The relationship between normalised image coordinates (x; y) and the defocus parameter f
and the real space image coordinates (X;Y; Z) in the lateral and axial direction is given by:

x = X
NA

�
; y = Y

NA

�
(1)

r = 2�
p
x2 + y2 ; (x; y) =

1

2�
(r cos�; r sin�)

f = 2
�

�
Z(1�

p
1�NA2) :

Without loss of generality, the usual symmetry assumption may be made and we expand the aberration phase
� as a series of Zernike polynomials:

� =
X
nm

�nmR
m
n (�)cos(m�) ;with real �nm (2)

We use the Fringe Zernike convention to represent the lens aberrations, as shown in the table below.

Fringe Zernike convention
(n;m) Name Rm

n (�)cos(m�) Term
(0,0) Piston 1 Z1

(1,1) Tilt � cos(�) Z2

(2,0) Defocus 2�2 � 1 Z4

(2,2) Astigmatism �2 cos(2�) Z5

(4,0) Spherical 6�4 � 6�2 + 1 Z9

(3,1) X-Coma (3�3 � 2�) cos(�) Z7

(3,3) X-Three point �3 cos(3�) Z10

...

For a number of special cases the point spread function is well known. The in-focus (f = 0), aberration-free
(�nm = 0) amplitude distribution of the point spread function is the Airy pattern:

U(x; y) = 2
J1(r)

r
(3)
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A central spot is surrounded by a dark ring corresponding to the �rst minimum of J1(r). The in-focus (f = 0)
amplitude distribution in the presence of small aberrations was already given by Nijboer9 as.

Spherical U(x; y) � 2

�
J1(r)

r
+ { �4;0

J5(r)

r

�
(4)

Coma U(x; y) � 2

�
J1(r)

r
� �3;1

J4(r)

r
cos�

�

Astigmatism U(x; y) � 2

�
J1(r)

r
� { �2;2

J3(r)

r
cos 2�

�

According to the extended Nijboer-Zernike theory, the complex amplitude of the point spread function U is in
�rst order approximation given by:

U � 2V00 + 2i
X
n;m

�nm im Vnm cosm� ; (5)

where �nm are the Zernike coeÆcients of the single aberrations Rm
n (�) cosm�. For integers n;m � 0 with

n�m � 0 and even, the Bessel series representation for Vnm reads

Vnm = exp(if)

1X
l=1

(�2if)l�1
pX

j=0

vlj
Jm+l+2j(r)

lrl
(6)

with vlj given by

vlj = (�1)p(m+ l + 2j)

�
m+ j + l � 1

l � 1

��
j + l � 1
l � 1

��
l � 1
p� j

���
q + l + j

l

�
; (7)

where l = 1; 2; : : : ; j = 0; : : : ; p. In (7) we have set

p =
n�m

2
; q =

n+m

2
: (8)

The special case of f = 0 corresponds to Eq. 4 . For the number L of terms to be included in the in�nite series
over l the following rule is used: if L is three times the defocus parameter, the absolute truncation error is of
the order 10�6.

Fig. 1 shows the through-focus aberration free-amplitude and intensity distribution of the point spread
function, calculated with Eq. 5.

High-order aberrations, i.e. large values of n and m and large defocus values up to f = �4� provide
no problem for the convergence of the series in Eq. 6. The extended Nijboer-Zernike approach is therefore
tailor-made for our phase retrieval problem and for the description of short-range stray light in the image plane.

Figure 2 shows a comparison of the extended Nijboer-Zernike theory and a brute force numerical integration
method. As an example we chose a lens with a considerable amount of spherical aberration �40 = 2�=6 in
combination with a large value of the defocus parameter f = �2�. The deviations between the analytical
computation and the brute force numerical integration method is typical of the order of 10�5 and are not visible
in the �gure. A detailed assessment and additional examples can be found in elsewhere.8

               Proc. SPIE Vol. 46911394



0 5 10 15

0

0.5

1
Real(U)

0 5 10 15

0

0.5

1
Imaginary(U)

0 5 10 15
0

0.5

1
Intensity

f=0   
f=π 
f=2π

Figure 1. The through-focus aberration-free amplitude and intensity distribution of the point spread function. The
horizontal axis represent the radial axis in normalised units, see Eq. 1
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Figure 2. Validating the extended Nijboer Zernike approach by comparing its results to a brute force numerical inte-
gration method. Spherical aberration �40 = 2�=6 is combined with defocus f = �2�. The vertical axis represents the
intensity of the point spread function, the horizontal axis represent the radial axis in normalised units, see Eq. 1

2.1. Determination of the Zernike coeÆcient: phase retrieval

At �rst sight it seems impossible to retrieve the aberrations from an intensity measurement as all phase in-
formation is lost in stepping from complex amplitude to intensity. Below we will show that this is not the
case.

The observed quantity is the image intensity I(x; y; f) = jU(x; y; f)j2. Usually the image intensity is
measured using rectangular coordinates. The �rst step is to transform the observed image intensity to polar
coordinates I(r; �; f). Using Eq. 5, the intensity is in a �rst order approximation:

I � 4jV00j
2 + 8

X
nm

�nmRef{
m+1V �00Vnmg cosm� (9)

It is our task to estimate the Zernike coeÆcients �nm from I .

A Fourier analysis with respect to the angular dependence of the observed image intensity is made:

	m(r; f) =
1

2�

Z 2�

0

I(r; �; f) cosm�d� (10)
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An inner product is de�ned in the (r; f) space:

(	;�) =

Z R

0

Z F

�F

r �	(r; f) � �(r; f)�drdf (11)

We denote:
	m
n (r; f) = 4Refim+1V �00Vnmg : (12)

Then by multiplying Eq. 9 by cosm� and integrating over �, the mth� harmonic of the observed intensity is
expressed as a linear sum of the 	m

n (r; f) functions with coeÆcients �nm:

X
n

�nm	
m
n (r; f) = 	m(r; f) (13)

By taking the inner product, de�ned above, of Eq. 13 with 	m
n0 , the Zernike coeÆcients can be found on solving

a linear system of equations: X
n

�nm(	
m
n ;	

m
n0) = (	m;	m

n0) (14)

By restricting the summation at the left hand side of Eq.13 to M terms, the linear combination of the 	m
n ,

obtained by solving theM�M linear system, gives the least square approximation of 	m as a linear combination
of the 	m

n . The solution is the best linear combination that one can obtain from the experimentally observed
intensity pro�le using M terms in Eq. 13.

Although the formulas given above are derived for a relative small numerical aperture < 0:65 and small
aberrations, the extended Nijboer-Zernike approach is able to describe the image formation and phase retrieval
procedure of high numerical aperture lenses including the e�ects of large aberrations. This subject is currently
under investigation.

2.2. Validating the phase retrieval capabilities

In this subsection we discuss the retrieving capabilities of the extended Nijboer-Zernike theory. As an example
we calculate the complex amplitude in the presence of low order coma �31 = 0:05 using Eq. 5. The problem
we have to solve is to retrieve the phase defect, i.e. �31, from the 3D-image intensity.

Following the phase retrieval recipe discussed above, the �rst step is to form the linear system. In our
example we use the �rst three coma terms n = 1; 3; 5 to describe the aberrations of the point spread function:

�1;1(	
1
1;	

1
1) + �3;1(	

1
3;	

1
1) + �5;1(	

1
5;	

1
1) = (	1;	1

1) (15)

�1;1(	
1
1;	

1
3) + �3;1(	

1
3;	

1
3) + �5;1(	

1
5;	

1
3) = (	1;	1

3)

�1;1(	
1
1;	

1
5) + �3;1(	

1
3;	

1
5) + �5;1(	

1
5;	

1
5) = (	1;	1

5)

Next we explicitly calculate the inner products:

+1411�1;1 � 236�3;1 � 41�5;1 = �11:8 (16)

�236�1;1 + 320�3;1 � 79�5;1 = +16

�41�1;1 � 79�3;1 + 103�5;1 = �3:9

The magnitude of the inner products depend on the sampling scheme in the (r; f)�space. The solution of Eq.
16 is:

�1;1 = 0; �3;1 = 0:05; �5;1 = 0 ; (17)

exactly matching the input.

In the next example we used a set of 40 random aberration coeÆcients �nm for input, as shown in the table.
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Simulated phase retrieval
Name Term n m Zernike coeÆcients

Input aberrations Retrieved
Tilt Z2 1 1 0.0175 0.0175

Defocus Z4 2 0 -0.0187 -0.0187
Astigmatism Z5 2 2 0.0726 0.0726

Coma Z7 3 1 -0.0588 -0.0588
Spherical Z9 4 0 0.2183 0.2183

Three-point Z10 3 3 -0.0136 -0.0136
Astigmatism Z12 4 2 0.0114 0.0114

Coma Z14 5 1 0.1067 0.1067
Spherical Z16 6 0 0.0059 0.0059

...

Using Eq. 5 we calculated the complex amplitude and the image intensity. The phase retrieval procedure is
applied and a perfect reconstruction results.

Why does phase retrieval using the extended Nijboer-Zernike approach works so well ? The basic functions
V �00Vnm are nearly orthogonal and the matrix to solve Zernike coeÆcients, similar to Eq. 16, is well conditioned.
The perfect reconstruction results, provided suÆcient (n;m)�terms are taken into account. Equation 5 and 9
suggests that we have neglected the quadratic intensity term in determining the Zernike coeÆcients. This is
not the case. One can show, that the quadratic terms are orthogonal to the linear terms with respect to their
dependence on f and therefore cancel on forming the linear systems for the coeÆcients �nm in Eq. 14.

3. EXPERIMENTAL RESULTS

3.1. Microlithography Simulation Microscope results

The Microlithography Simulation Microscope (MSM 100)10 emulates the optics of a scanner and is used for
the evaluation of mask defects and optimisation of lithographic processes. The MSM 100 microscope is set
to emulate a � = 193 nm, NA = 0:75 scanner. The acquired through focus aerial images of the isolated
hole are transferred to an o�-line computer for evaluation using home made software. We retrieved the Zernike
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Figure 3. Cross sections of the MSM 100 point spread function at various focus levels. Solid lines represent the

experimental data and the dashed lines are calculated using the retrieved Zernike coeÆcients. High order X-coma is the

dominant aberration. The (X;Y )�axis are in normalised radial units, see Eq. 1.

coeÆcients as described in the previous section. As a check, we calculated the image intensity using the retrieved
Zernike coeÆcients and compared it with the experimental image intensity as shown in Fig. 3. The dominant
aberration is 5th�order X-coma, which is clearly visible in the extreme defocus positions.
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3.2. Lithographic projection lens

Getting an electronic version of the point spread function of a scanner is somewhat more complicated. Image
sensors are usually line detectors with relative broad lines having only two orientations. Even if multiple
orientations would have been available, the procedure to reconstruct a point spread function out of the image
sensor signal, that essentially integrates perpendicular to the line direction, is a non-trivial procedure. Therefore
we have chosen for a resist based experiment.
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Figure 4. SEM image of a chrome on quartz ret-

icle with an isolated hole, with a 0:6 �m diameter,

used in our phase retrieval experiments.

X−axis [µm]

Y
−

ax
is

 [µ
m

]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Reference 

Reference 

Figure 5. SEM image of an exposure onto resist.

First two reference marks are exposed de�ning the

coordinate system. The central image represents

a single contour of the point spread function.

The reticle, shown in Fig. 4, is a simple chrome on quartz reticle with a 4� 0:15 = 0:6�m transparent hole.
An ASML PAS5500/950 system with a � = 193 nm, NA = 0:63 projection lens is used to image the reticle
onto resist on a SiON anti-reective coating. Using SiON instead of an organic anti-reective coating has the
advantage that it provides a good contrast in the SEM. First two small reference marks are exposed, using the
same reticle. The coordinate system, superimposed onto the image, is shown. The relative large central image
in Fig. 5 represents a single contour of the point spread function at a certain exposure dose and defocus value.
Inside this contour, the image intensity is above the resist threshold value and the resist completely develops
away, leaving the SiON layer. Outside the contour, the SEM image shows the undeveloped resist.

The procedure is repeated for a number of focus and exposure dose settings, i.e. the reticle is exposed in
a focus exposure matrix (FEM). A SEM, under job control, collects all images. The data reduction is done
o�-line. All contours are combined into a through-focus aerial image from which the projection lens aberrations
are determined as described above. Fig. 6 shows the calculated image intensity using the retrieved Zernike
coeÆcients compared to the experimental image intensity. The dominant terms are low order astigmatism and
low order three-foil.

4. DISCUSSION

In this paper we have given the proof of principle of a new experimental method to determine the aberrations
of an optical system in the �eld. The measurement is based on the observation of the intensity point spread
function of the lens and uses an analytical method, the so-called extended Nijboer-Zernike approach for analysis
and interpretation of the measurement. The new method is applicable to lithographic projection lenses, but also
to microscopes such as the objective lens of an optical mask inspection tool. Phase retrieval was demonstrated
both analytically and experimentally.
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Figure 6. The point spread function of a scanner reconstructed from resist images. Solid lines represent the experimental

data and the dashed lines are calculated using the retrieved Zernike coeÆcients. Low order astigmatism and low order

three-foil are the dominant aberration. The (X;Y )�axis are in normalised radial units, see Eq. 1.
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